精英家教网 > 高中数学 > 题目详情

在2与7之间插入n个数,使得包括2和7在内的n+2个数组成以2为首项的等差数列.如果这个等差数列的前16项之和为56,求n.

答案:24
解析:

依题意,此数列公差,其前16项之和为·,解得n+1=25,所以n=24.


提示:

  [提示]要求n,可以根据题意建立关于n的方程,再通过解方程求出n.

  [说明]等差数列的前n项和有两种表示形式:(1);(2)Sn=na1在已知首项、末项和项数的条件下,可选用前一个公式,而已知首项、公差和项数时,常选用后一个公式.掌握上述规律,在解题时灵活地进行选择,对提高我们的解题能力是十分有益的.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在1与2之间插入n个正数a1,a2,a3,…,an,使这n+2个数成等比数列;又在1与2之间插入n个正数b1,b2,b3,…,bn,使这n+2个数成等差数列.记An=a1a2a3…an,Bn=b1+b2+b3+…+bn
(1)求数列{An}和{Bn}的通项;
(2)当n≥7时,比较An和Bn的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在1与2之间插入n个正数a1,a2,a3,…,an,使这n+2个数成等比数列;又在1与2之间插入n个正数b1,b2,b3,…,bn,使这n+2个数成等差数列.记An=a1a2a3…an,Bn=b1+b2+b3+…+bn.

(1)求数列{An}和{Bn}的通项;

(2)当n≥7时,比较An与Bn的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在1与2之间插入n个正数A1,A2,A3,…,An,使这n+2个数成等比数列;又在1与2之间插入n个正数B1,B2,B3,…,Bn,使这n+2个数成等差数列.记An=A1A2A3An,Bn=B1+B2+…+

Bn.

(1)求数列{An} 和{Bn}的通项;

(2)当n≥7时,比较AnBn的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在1与2之间插入n个正数A1,A2,A3,…,An,使这n+2个数成等比数列;又在1与2之间插入n个正数B1,B2,B3,…,Bn,使这n+2个数成等差数列.记An=A1A2A3An,Bn=B1+B2+…+

Bn.

(1)求数列{An} 和{Bn}的通项;

(2)当n≥7时,比较AnBn的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在1与2之间插入n个正数a1,a2,a3,…,an,使这n+2个数成等比数列;又在1与2之间插入n个正数b1,b2,b3,…,bn,使这n+2个数成等差数列.记An=a1a2a3…an,Bn=b1+b2+b3+…+bn.

(1)求数列{An} 和{Bn}的通项;

(2)当n≥7时,比较An与Bn的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案