精英家教网 > 高中数学 > 题目详情
设集合I={1,2,3,…,n}(n∈N+),选择I的两个非空子集A和B,使B中最小的数大于A中最大的数,记不同的选择方法种数为an,显然a1=0,a2=
C
2
2
=1
(1)求an
(2)记数列{an}的前n项和为Sn,求Sn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由题意得:a1=0,a2=
C
2
2
=1当n≥2时,an=
C
2
n
+2
C
3
n
+3
C
4
n
+…+(n-1)
C
n
n
,由此能求出an=n2n-1-2n+1(n∈N+
(2)由an=n2n-1-2n+1(n∈N+),利用分组求和法和裂项求和法能求出数列{an}的前n项和Sn
解答: 解:(1)由题意得:a1=0,a2=
C
2
2
=1
当n≥2时,an=
C
2
n
+2
C
3
n
+3
C
4
n
+…+(n-1)
C
n
n

=(2
C
2
n
+3
C
3
n
+4
C
4
n
+…+n
C
n
n
)-(
C
2
n
+
C
3
n
+
C
4
n
+…+
C
n
n

=n2n-1-(2n-1)=n2n-1-2n+1
又a1=0,a2=1也满足,
故an=n2n-1-2n+1(n∈N+
(2)Sn=a1+a2+…+an
=(1×20+2×21+3×22+…+n×2n-1)-( 21+22+…+2n)+n
记Tn=1×20+2×21+3×22+…+n×2n-1
2 Tn=1×21+2×22+3×23+…+n×2n
两式相减得:Tn=(n-1)2n+1
故Sn=(n-1)2n+1-(2n+1-2)+n
=(n-3)2n+n+3.
点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意分组求和法和裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn是数列{an}前n项的和,则
2Sn+16
an+3
(n∈N+)的最小值为(  )
A、4
B、3
C、2
3
-2
D、
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x-1)的图象关于(1,0)对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(ln2)•f(ln2),c=(log 
1
2
4)•f(log 
1
2
4),则a,b,c的大小关系是(  )
A、a>b>c
B、a>c>b
C、c>b>a
D、c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c.已知a=3,cos
A+C
2
=
3
3

(1)求cosB的值;
(2)分别求b的取值范围及
AB
AC
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过抛物线x2=4y的焦点,且与抛物线交于A、B两点,点O为坐标原点.
(1)证明:
OA
OB
=-3;
(2)若△AOB的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

现将三双不同品牌的鞋排成一行,记同一双鞋相邻的数目为ξ.
(1)求ξ=0时的概率
(2)求ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),D(1,0),过椭圆C的右焦点F(
2
,0)且垂直于x轴的直线与椭圆交于A,B两点,
OA
OB
=
5
3

(1)求椭圆C的方程;
(2)过点D的直线与椭圆C交于M,N两点,若
MD
=2
DN
,求直线MN的方程;
(3)设直线y=kx+2交椭圆C于P,Q两点,若以DP,DQ为邻边的平行四边形DPRQ满足|PQ|=|DR|,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,且a1=2,a1+a2+a3=9.
(1)求数列{an}的通项公式;
(2)令bn=an2an求数列{bn}前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,过点P(1,2)作倾斜角为45°的直线l与曲线C:x2+y2=1相交于不同的两点M,N.
(Ⅰ)写出直线l的参数方程;
(Ⅱ)求
1
|PM|
+
1
|PN|
的值.

查看答案和解析>>

同步练习册答案