【题目】已知函数
在
与
处都取得极值.
(1)求
的值及函数
的单调区间;
(2)若对
,不等式
恒成立,求
的取值范围.
【答案】(1)
,
的减区间为
,增区间为
;(2)
.
【解析】
求出
并令
得到方程,把
和
代入即可求出
的值,判断出导函数的符号,即可得到函数的单调区间
求出函数的最大值为
,要使不等式恒成立,即要证明
,即可求出
的取值范围
(1)f′(x)=3x2+2ax+b,由题意得
即![]()
解得![]()
∴f(x)=x3-
x2-6x+c,f′(x)=3x2-3x-6.
令f′(x)<0,解得-1<x<2;
令f′(x)>0,解得x<-1或x>2.
∴f(x)的减区间为(-1,2),增区间为(-∞,-1),(2,+∞).
(2)由(1)知,f(x)在(-∞,-1)上单调递增;在(-1,2)上单调递减;在(2,+∞)上单调递增.
∴x∈[-2,3]时,f(x)的最大值即为f(-1)与f(3)中的较大者.
f(-1)=
+c,f(3)=-
+c.
∴当x=-1时,f(x)取得最大值.
要使f(x)+
c<c2,
只需c2>f(-1)+
c,
即2c2>7+5c,解得c<-1或c>
.
∴c的取值范围为(-∞,-1)∪(
,+∞).
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=2时,求不等式f(x)<g(x)的解集;
(2)设a>
,且当x∈[
,a]时,f(x)≤g(x),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设偶函数f(x)在[0,+∞)单调递增,则使得f(x)>f(2x﹣1)成立的x的取值范围是( )
A.(
,1)
B.(﹣∞,
)∪(1,+∞)??
C.(﹣
,
)
D.(﹣∞,﹣
)∪(
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,四点
,
,
,
中恰有两个点为椭圆
的顶点,一个点为椭圆
的焦点.
(1)求椭圆
的方程;
(2)若斜率为1的直线
与椭圆
交于不同的两点
,且
,求直线
方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC中,a,b,c分别是角A、B、C的对边,向量
=(2sinB,2﹣cos2B),
=(2sin2(
+
),﹣1)且
⊥
.
(1)求角B的大小;
(2)若a=
,b=1,求c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点,
轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为
(
是参数),直线
的极坐标方程为
.
(1)求直线
的直角坐标方程和曲线C的普通方程;
(2)设点P为曲线C上任意一点,求点P到直线
的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com