精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=log3(ax2+3x+4)
(1)若f(1)<2,求a的取值范围
(2)若a=1,求函数f(x)的值域.

【答案】
(1)解:∵f(1)<2,

∴log3(a+7)<2=log39,

∴0<a+7<9,

解得:﹣7<a<2


(2)解:若a=1,函数f(x)=log3(x2+3x+4)

x2+3x+4≥ ,且y=log3t为增函数,

故f(x)≥log3

∴函数f(x)的值域为[log3 ,+∞)


【解析】(1)若f(1)<2,则log3(a+7)<2,解得a的取值范围(2)若a=1,则f(x)=log3(x2+3x+4),由二次函数的图象和性质,求出真数的范围,进而可得函数f(x)的值域.
【考点精析】通过灵活运用函数的值域和函数的最值及其几何意义,掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的;利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)= 是奇函数.
(1)确定y=f(x)和y=g(x)的解析式;
(2)若对任意的x∈[1,4],不等式f(2x﹣3)+f(x﹣k)>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)= +alnx﹣3x,g(x)=﹣x2+8x,且x=1是函数f(x)的极大值点.
(1)求a的值.
(2)如果函数y=f(x)和函数y=g(x)在区间(b,b+1)上均为增函数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,在我市某普通中学高中生中随机抽取200名学生,得到如下2×2列联表:

喜欢数学课

不喜欢数学课

合计

30

60

90

20

90

110

合计

50

150

200

经计算K2≈6.06,根据独立性检验的基本思想,约有(填百分数)的把握认为“性别与喜欢数学课之间有关系”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由大于0的自然数构成的等差数列{an},它的最大项为26,其所有项的和为70;
(1)求数列{an}的项数n;
(2)求此数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线斜率为0.

(1)求

(2)若存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高二年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名,现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.

分数段

3

9

18

15

6

9

6

4

5

10

13

2

附表及公式:

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828


(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定80分以上者为优分(含80分),请你根据已知条件作出 列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= 是(﹣∞,+∞)上的减函数,那么a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的拆线图.

(1)由拆线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程,并预测公司2017年4月份(即时)的市场占有率;

(2)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:

车型 报废年限

1年

2年

3年

4年

总计

20

35

35

10

100

10

30

40

20

100

经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年,且以频率作为每辆单车使用寿命的概率.如果你是 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

(参考公式:回归直线方程为,其中

查看答案和解析>>

同步练习册答案