精英家教网 > 高中数学 > 题目详情
2.设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2-x,则f(1)=3.

分析 根据函数奇偶性的性质进行转化求解即可.

解答 解:∵f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2-x,
∴f(1)=f(-1)=2×(-1)2-(-1)=2+1=3,
故答案为:3

点评 本题主要考查函数值的计算,根据函数奇偶性的性质进行转化求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知△ABC的周长为$\sqrt{2}+1$,面积为$\frac{1}{6}sinC$,且$sinA+sinB=\sqrt{2}sinC$,则角C的值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列命题:
①若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,则存在实数λ,使得$\overrightarrow b=λ\overrightarrow a$;
②$a={log_{\frac{1}{3}}}2,b={log_{\frac{1}{2}}}3,c={({\frac{1}{3}})^{0.5}}$大小关系是c>a>b;
③已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}=-3$;
④已知a>0,b>0,函数y=2aex+b的图象过点(0,1),则$\frac{1}{a}+\frac{1}{b}$的最小值是$4\sqrt{2}$.其中正确命题的序号是①② (把你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,c=$\sqrt{{a}^{2}-{b}^{2}}$)的左顶点为A,上顶点为B,左焦点为F,原点O到直线BF的距离为$\frac{c}{2}$,△ABF的面积为1-$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)过直线x=4上的动点P引椭圆C的两条切线,切点分别为M,N,求△OMN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知{an}是等差数列,公差d不为零,且a3+a9=a10-a8,则a5=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设等比数列{an}的公比为q,其前项之积为Tn,并且满足条件:${a_1}>1,{a_{2015}}{a_{2016}}>1,\frac{{{a_{2015}}-1}}{{{a_{2016}}-1}}<0$.给出下列结论:(1)0<q<1;(2)a2015a2017-1>0;(3)T2016的值是Tn中最大的(4)使Tn>1成立的最大自然数等于4030.其中正确的结论为(  )
A.(1),(3)B.(2),(3)C.(1),(4)D.(2),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设整数a使得关于x的一元二次方程5x2-5ax+26a-143=0的两个根都是整数,则a的值是18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在三角形ABC中,角角A,B,C所对的边分别为a,b,c,且a+c=2b=2,a=2sinA,则此三角形的面积S△ABC=$\frac{1}{4}$(6-3$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求倾斜角为$\frac{5π}{6}$,且在y轴上的截距是-4的直线方程.

查看答案和解析>>

同步练习册答案