已知函数f(x)=-x2+2ex+m-1,g(x)=x+
(x>0).
(1)若y=g(x)-m有零点,求m的取值范围;
(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.
[分析] (1)y=g(x)-m有零点即y=g(x)与y=m的图象有交点,所以可结合图象求解.(2)g(x)-f(x)=0有两个相异实根⇔y=f(x)与y=g(x)的图象有两个不同交点,所以可利用它们的图象求解.
(1)方法一:∵g(x)=x+
≥2
=2e,
![]()
等号成立的条件是x=e,
故g(x)的值域是[2e,+∞),
因而只需m≥2e,则y=g(x)-m就有零点.
方法二:作出g(x)=x+
(x>0)的大致图象如图.
可知若使y=g(x)-m有零点,则只需m≥2e.
(2)若g(x)-f(x)=0有两个相异实根,即g(x)与f(x)的图象有两个不同的交点,
作出g(x)=x+
(x>0)的大致图象如图.
![]()
∵f(x)=-x2+2ex+m-1
=-(x-e)2+m-1+e2.
∴其图象的对称轴为x=e,开口向下,
最大值为m-1+e2.
故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.
∴m的取值范围是(-e2+2e+1,+∞).
科目:高中数学 来源: 题型:
用反证法证明命题“若整系数的一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设中正确的是 ( )
A.假设a,b,c都是偶数
B.假设a,b,c都不是偶数
C.假设a,b,c至多有一个是偶数
D.假设a,b,c至多有两个偶数
查看答案和解析>>
科目:高中数学 来源: 题型:
函数f(x)=2x和g(x)=x3的图象的示意图如图所示.设两函数的图象交于点A(x1,y1)、B(x2,y2),且x1<x2.
(1)请指出示意图中曲线C1、C2分别对应哪一个函数?
(2)若x1∈[a,a+1],x2∈[b,b+1],且a、b∈{1,2,3,4,5,6,7,8,9,10,11,12},指出a、b的值,并说明理由;
(3)结合函数图象示意图,请把f(8)、g(8)、f(2012)、g(2012)四个数按从小到大的顺序排列.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
某加工厂需定期购买原材料,已知每公斤原材料的价格为1.5元,每次购买原材料需支付运费600元.每公斤原材料每天的保管费用为0.03元,该厂每天需消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管).
(1)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1(元)关于x的函数关系式;
(2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y(元)最少,并求出这个最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知x1,x2是函数f(x)=e-x-|lnx|的两个零点,则( )
A.
<x1x2<1 B.1<x1x2<e
C.1<x1x2<10 D.e<x1x2<10
查看答案和解析>>
科目:高中数学 来源: 题型:
定义域为D的函数f(x)同时满足条件:①常数a、b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[ka,kb](k∈N*),那么我们把f(x)叫做[a,b]上的“k级矩形”函数.函数f(x)=x3是[a,b]上的“1级矩形”函数,则满足条件的常数对(a,b)共有( )
A.1对 B.2对
C.3对 D.4对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com