【题目】已知椭圆
:
(
)经过点
,且两焦点与短轴的一个端点的连线构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线
:
(
,
)交椭圆
于
、
两点,试问:在坐标平面上是否存在一个定点
,使得以
为直径的圆恒过点
.若存在,求出点
的坐标;若不存在,请说明理由.
【答案】(1)
;(2)在坐标平面上存在一个定点
满足条件.
【解析】试题分析:
(1)由题设知a=
,所以
,椭圆经过点P(1,
),代入可得b=1,a=
,由此可知所求椭圆方程
(2)首先求出动直线过(0,﹣
)点.当l与x轴平行时,以AB为直径的圆的方程:x2+(y+
)2=
;当l与y轴平行时,以AB为直径的圆的方程:x2+y2=1.由
.由此入手可求出点T的坐标.
解:
(1)∵椭圆
:
(
)的两焦点与短轴的一个端点的连线构成等腰直角三角形,
∴
,∴![]()
又∵椭圆经过点
,代入可得
.
∴
,故所求椭圆方程为
.
(2)首先求出动直线过
点.
当
与
轴平行时,以
为直径的圆的方程: ![]()
当
与
轴平行时,以
为直径的圆的方程: ![]()
由
解得![]()
即两圆相切于点
,因此,所求的点
如果存在,只能是
,事实上,点
就是所求的点.
证明如下:
当直线
垂直于
轴时,以
为直径的圆过点![]()
当直线
不垂直于
轴,可设直线
: ![]()
由
消去
得: ![]()
记点
、
,则![]()
又因为
, ![]()
所以
![]()
![]()
![]()
所以
,即以
为直径的圆恒过点![]()
所以在坐标平面上存在一个定点
满足条件.
科目:高中数学 来源: 题型:
【题目】如图,在边长为1的正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧(在正方形内,包括边界点)上的任意一点,则
的取值范围是________; 若向量
,则
的最小值为_________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在
上的函数
,有下列四个命题:
①若
是奇函数,则
的图象关于点
对称;
②若对
,有
,则
的图象关于直线
对称;
③若对
,有
,则
的图象关于点
对称;
④函数
与函数
的图像关于直线
对称.
其中正确命题的序号为__________.(把你认为正确命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的是( )
A.各个面都是三角形的几何体是三棱锥
B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥
C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
在如图所示的多面体中,四边形
和
都为矩形。
![]()
(Ⅰ)若
,证明:直线
平面
;
(Ⅱ)设
,
分别是线段
,
的中点,在线段
上是否存在一点
,使直线
平面
?请证明你的结论。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com