精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3+bx2+cx为奇函数,且在x=-1时取得极大值.
(I)求b,c;
(II)求函数的单调区间;
(III)解不等式|f(x)|≤2.
分析:(I)求导函数,利用函数f(x)=x3+bx2+cx为奇函数,且在x=-1时取得极大值,建立方程,可求b,c;
(II)利用导数的正负,可得函数的单调区间;
(III)不等式|f(x)|≤2,等价于-2≤f(x)≤2,由此可得不等式的解集.
解答:解:(I)求导函数可得f′(x)=3x2+2bx+c
∵函数f(x)=x3+bx2+cx为奇函数,且在x=-1时取得极大值
∴f(-1)+f(1)=0,f′(1)=0
∴b=0,3+2b+c=0
∴b=0,c=-3;
(II)f(x)=x3-3x,f′(x)=3x2-3=3(x+1)(x-1)
令f′(x)>0可得x<-1或x>1;令f′(x)<0可得-1<x<1
∴函数的单调增区间为(-∞,-1),(1,+∞),单调减区间为(-1,1);
(III)不等式|f(x)|≤2,等价于-2≤f(x)≤2
∴f(x)-2=x3-3x-2=(x+1)2(x-2)≤0,且f(x)+2=x3-3x+2=(x-1)2(x+2)≥0
∴-2≤x≤2
即不等式的解集为{x|-2≤x≤2}.
点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查解不等式,正确求导是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案