精英家教网 > 高中数学 > 题目详情

设函数,其中实数
(1)若,求函数的单调区间;
(2)当函数的图象只有一个公共点且存在最小值时,记的最小值为,求的值域;
(3)若在区间内均为增函数,求实数的取值范围.

(1)详见解析;(2);(3)

解析试题分析:(1)这是一个三次函数求单调区间的问题,此类问题比较熟悉,三次函数的导数为二次函数,它的零点容易求出,但要注意对零点大小的比较,才能准确写出单调区间;(2)函数的图象只有一个公共点,知方程只有一个根(含重根),结合有最小值,可求出的取值范围,而是一个二次函数,易得它提最小值,最后可求出的值域;(3)由(1)的过程和结果易知的单调增区间,应是其子区间,再由的单调增区间,也应是其子区间,从而确定的取值范围,要注意分类讨论思想的应用.
试题解析:(1)∵,又
∴当时,;当时,
的递增区间为,递减区间为
(2)由题意知
恰有一根(含重根)∴,即
,且存在最小值,所以
,∴,∴的值域为
(3)当时,内是增函数,内是增函数,由题意得,解得
时,内是增函数,内是增函数,由题意得,解得
综上可知,实数的取值范围为
考点:函数的综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若在[-3,2]上具有单调性,求实数的取值范围。
(2)若有最小值为-12,求实数的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求值化简:
(Ⅰ)
(Ⅱ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市一家庭今年一月份、二月份、和三月份煤气用量和支付费用如下表所示:

月份
用气量(立方米)
煤气费(元)
1
4
4.00
2
25
14.00
3
35
19.00
(该市煤气收费的方法是:煤气费=基本费+超额费+保险费)
若每月用气量不超过最低额度立方米时,只付基本费3元+每户每月定额保险费元;若用气量超过立方米时,超过部分每立方米付元.
⑴根据上面的表格求的值;
⑵若用户第四月份用气30立方米,则应交煤气费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设不等式的解集为M.
(1)如果,求实数的取值范围;
(2)如果,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.
(Ⅰ)若函数的图象与轴无交点,求的取值范围;
(Ⅱ)若函数上存在零点,求的取值范围;
(Ⅲ)设函数.当时,若对任意的,总存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像在点处的切线方程为.
(Ⅰ)求实数的值;
(Ⅱ)求函数在区间上的最大值;
(Ⅲ)若曲线上存在两点使得是以坐标原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数上是减函数,求实数a的最小值;
(2)若,使成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是二次函数,不等式的解集是,且在区间上的最大值为12.
(1)求的解析式;
(2)设函数上的最小值为,求的表达式.

查看答案和解析>>

同步练习册答案