设函数,,其中实数.
(1)若,求函数的单调区间;
(2)当函数与的图象只有一个公共点且存在最小值时,记的最小值为,求的值域;
(3)若与在区间内均为增函数,求实数的取值范围.
(1)详见解析;(2);(3).
解析试题分析:(1)这是一个三次函数求单调区间的问题,此类问题比较熟悉,三次函数的导数为二次函数,它的零点容易求出,但要注意对零点大小的比较,才能准确写出单调区间;(2)函数与的图象只有一个公共点,知方程只有一个根(含重根),结合有最小值,可求出的取值范围,而是一个二次函数,易得它提最小值,最后可求出的值域;(3)由(1)的过程和结果易知的单调增区间,应是其子区间,再由的单调增区间,也应是其子区间,从而确定的取值范围,要注意分类讨论思想的应用.
试题解析:(1)∵,又
∴当或时,;当时,
∴的递增区间为和,递减区间为.
(2)由题意知
即恰有一根(含重根)∴,即,
又,且存在最小值,所以
又,∴,∴的值域为.
(3)当时,在和内是增函数,在内是增函数,由题意得,解得.
当时,在和内是增函数,在内是增函数,由题意得,解得.
综上可知,实数的取值范围为.
考点:函数的综合应用.
科目:高中数学 来源: 题型:解答题
某市一家庭今年一月份、二月份、和三月份煤气用量和支付费用如下表所示:
月份 | 用气量(立方米) | 煤气费(元) |
1 | 4 | 4.00 |
2 | 25 | 14.00 |
3 | 35 | 19.00 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,.
(Ⅰ)若函数的图象与轴无交点,求的取值范围;
(Ⅱ)若函数在上存在零点,求的取值范围;
(Ⅲ)设函数,.当时,若对任意的,总存在,使得,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的图像在点处的切线方程为.
(Ⅰ)求实数的值;
(Ⅱ)求函数在区间上的最大值;
(Ⅲ)若曲线上存在两点使得是以坐标原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com