精英家教网 > 高中数学 > 题目详情

设不等式的解集为M.
(1)如果,求实数的取值范围;
(2)如果,求实数的取值范围.

(1);(2).

解析试题分析:本题考查含参一元二次不等式的解法及二次函数图像的性质等基础知识,考查转化思想、分类讨论思想等数学思想方法.第一问,由于抛物线开口向上,要使不等式的解集不为,只需;第二问,一元二次不等式含参数,对应的一元二次方程是否有解取决于,所以本问讨论的三种情况,在每一种情况下,求出方程的根,写出不等式的解集,利用子集关系列出不等式,求的取值范围.
试题解析:(1),∴.      4分
(2)①当,即时,,满足题意;      6分
②当时,时,,不合题意;时,,满足题意;      8分
③当,即时,令,要使,只需,      10分
,综上,.      12分
考点:1.二次函数的判别式;2.含参一元二次不等式的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图是某重点中学学校运动场平面图,运动场总面积15000平方米,运动场是由一个矩形和分别以为直径的两个半圆组成,塑胶跑道宽8米,已知塑胶跑道每平方米造价为150元,其它部分造价每平方米80元,

(Ⅰ)设半圆的半径(米),写出塑胶跑道面积的函数关系式
(Ⅱ)由于受运动场两侧看台限制,的范围为,问当为何值时,运动场造价最低(第2问取3近似计算).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数,且不等式的解集为.
(1)方程有两个相等的实根,求的解析式;
(2)的最小值不大于,求实数的取值范围;
(3)如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)若的定义域是,求实数的取值范围及的值域;
(2)若的值域是,求实数的取值范围及的定义域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中实数
(1)若,求函数的单调区间;
(2)当函数的图象只有一个公共点且存在最小值时,记的最小值为,求的值域;
(3)若在区间内均为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)求f(x)的单调区间;
(2)求f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的值域;
(2)若时,函数的最小值为,求的值和函数 的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数,记.
(Ⅰ)求函数的定义域的表达式及其零点;
(Ⅱ)若关于的方程在区间内仅有一解,求实数的取值范围.

查看答案和解析>>

同步练习册答案