精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2+x的图象上一点(-1,-2)以及点(-1+△x,-2+△y),求函数从(-1,-2)到(-1+△x,-2+△y)的平均变化率.
考点:导数的运算
专题:导数的概念及应用
分析:根据平均变化率的定义计算即可.
解答: 解:∵-2+△y=-(-1+△x)2+(-1+△x),
△y
△x
=
-(-1+△x)2+(-1+△x)-(-2)
△x
=3-△x.
点评:本题主要考查平均变化率的计算,根据平均变化率的公式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
y
=(1,-2,4),向量
x
满足以下三个条件:
y
x
=0;
②|
x
|=10;
x
与向量
n
=(1,0,0)垂直;
求向量
x

查看答案和解析>>

科目:高中数学 来源: 题型:

一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体中心的距离不超过 1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下给出五个命题,其中真命题的序号为
 

①函数f(x)=3ax+1-2a在区间(-1,1)上存在一个零点,则a的取值范围是a<-1或a>
1
5

②“b2=ac”是“a,b,c成等比数列”的充分不必要条件;
?x∈(0,  
π
2
),  x<tanx

④若0<a<b<1,则lna<lnb<ab<ba

查看答案和解析>>

科目:高中数学 来源: 题型:

若x>-1且x≠1,比较x2+1与x+x2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设动点(x,y)满足
x-y+1≥0
x+y-4≥0
x≥3
,则x2+y2的最小值为(  )
A、
10
B、
5
C、
17
2
D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn,若a2=4,2Sn=an(n+1).
(Ⅰ)求a1、a3
(Ⅱ)求数列{an}的通项公式an
(Ⅲ)设Tn=
1
a
2
1
+
a
2
2
+
1
a
2
2
+
a
2
3
+…+
1
a
2
n
+
a
2
n+1
,求证:Tn
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=(
1
2
x,x∈[-1,3],则函数的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=ax+b-1(a>0且a≠1)的图象经过一、二、三象限,一定有(  )
A、a>1且b>1
B、a>1且0<b<1
C、a>1且b<0
D、0<a<1且b<0

查看答案和解析>>

同步练习册答案