对于函数
,若存在
,使
成立,则称
为
的“滞点”?已知函数
.
(1)试问
有无“滞点”?若有,求之,否则说明理由;
(2)已知数列
的各项均为负数,且满足
,求数列
的通项公式.
科目:高中数学 来源: 题型:
在平面直角坐标系xOy中,已知曲线
,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(1)将曲线
上的所有点的横坐标、纵坐标分别伸长为原来的
、2倍后得到曲线![]()
试写出直线
的直角坐标方程和曲线
的参数方程;
(2)在曲线
上求一点P,使点P到直线
的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
以直角坐标系的原点
为极点,
轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线
的参数方程为
(
为参数,
),曲线
的极坐标方程为
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)设直线
与曲线
相交于
、
两点,当
变化时,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com