精英家教网 > 高中数学 > 题目详情
1.如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.
(1)证明:PE⊥FG;
(2)求二面角P-AD-C的正切值;
(3)求直线PA与直线FG所成角的余弦值.

分析 (1)通过△PDC为等腰三角形可得PE⊥CD,利用线面垂直判定定理及性质定理即得结论;
(2)通过(1)及面面垂直定理可得PG⊥AD,则∠PDC为二面角P-AD-C的平面角,利用勾股定理即得结论;
(3)连结AC,利用勾股定理及已知条件可得FG∥AC,在△PAC中,利用余弦定理即得直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC的余弦值.

解答 (1)证明:在△PDC中PO=PC且E为CD中点,
∴PE⊥CD,
又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE?平面PCD,
∴PE⊥平面ABCD,
又∵FG?平面ABCD,
∴PE⊥FG;
(2)解:由(1)知PE⊥平面ABCD,∴PE⊥AD,
又∵CD⊥AD且PE∩CD=E,
∴AD⊥平面PDC,
又∵PD?平面PDC,∴AD⊥PD,
又∵AD⊥CD,∴∠PDC为二面角P-AD-C的平面角,
在Rt△PDE中,由勾股定理可得:
PE=$\sqrt{P{D}^{2}-D{E}^{2}}$=$\sqrt{{4}^{2}-{3}^{2}}$=$\sqrt{7}$,
∴tan∠PDC=$\frac{PG}{DG}$=$\frac{\sqrt{7}}{3}$;
(3)解:连结AC,则AC=$\sqrt{{6}^{2}+{3}^{2}}$=3$\sqrt{5}$,
在Rt△ADP中,AP=$\sqrt{A{D}^{2}+D{P}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵AF=2FB,CG=2GB,
∴FG∥AC,
∴直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC,
在△PAC中,由余弦定理得
cos∠PAC=$\frac{P{A}^{2}+A{C}^{2}-P{C}^{2}}{2PA•AC}$
=$\frac{{5}^{2}+(3\sqrt{5})^{2}-{4}^{2}}{2×5×3\sqrt{5}}$
=$\frac{9}{25}\sqrt{5}$.

点评 本题考查线线垂直的判定、二面角及线线角的三角函数值,涉及到勾股定理、余弦定理等知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为(  )
A.0.4B.0.6C.0.8D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图(算法流程图),输出的n为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为(  )
A.$\frac{5}{21}$B.$\frac{10}{21}$C.$\frac{11}{21}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin($\frac{π}{6}$x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为(  )
A.5B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则(  )
A.p是q的充分条件,但不是q的必要条件
B.p是q的必要条件,但不是q的充分条件
C.p是q的充分必要条件
D.p既不是q的充分条件,也不是q的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin2x-sin2(x-$\frac{π}{6}$),x∈R.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[-$\frac{π}{3}$,$\frac{π}{4}$]内的最大值和最小值.

查看答案和解析>>

同步练习册答案