【题目】给出下列四个结论:
①若命题
,
,则
;
②集合
满足:
,则符合条件的集合
的个数为3;
③命题“若
,则方程
有实数根”的逆否命题为:“若方程
没有实数根,则
”;
④设复数
满足
,
为虚数单位,复数
在复平面内对应的点在第三象限;
其中正确结论的个数为( )
A.1B.2C.3D.4
科目:高中数学 来源: 题型:
【题目】若一个三位数的个位数字大于十位数字,十位数字大于百位数字,我们就称这个三位数为“递增三位数”.现从所有的递增三位数中随机抽取一个,则其三个数字依次成等差数列的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为
,焦距为2,抛物线
的准线经过C的左焦点F.
(1)求C与M的方程;
(2)直线l经过C的上顶点且l与M交于P,Q两点,直线FP,FQ与M分别交于点D(异于点P),E(异于点Q),证明:直线DE的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年是中国改革开放的第40周年,为了充分认识新形势下改革开放的时代性,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:
,并绘制了如图所示的频率分布直方图.
![]()
(1)现从年龄在
内的人员中按分层抽样的方法抽取8人,再从这8人中随机抽取3人进行座谈,用
表示年龄在
内的人数,求
的分布列和数学期望;
(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有
名市民的年龄在
的概率为
.当
最大时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
与曲线
,(
为参数).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.
(1)写出曲线
,
的极坐标方程;
(2)在极坐标系中,已知
与
,
的公共点分别为
,
,
,当
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,过坐标原点
作两条互相垂直的射线与椭圆
分别交于
,
两点.
(1)证明:当
取得最小值时,椭圆
的离心率为
.
(2)若椭圆
的焦距为2,是否存在定圆与直线
总相切?若存在,求定圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量
(万只)与时间
(年)(其中
)的关系为
.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值
(其中
为常数,且
)来进行生态环境分析.
(1)当
时,求比值
取最小值时
的值;
(2)经过调查,环保部门发现:当比值
不超过
时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数
的取值范围.(
为自然对数的底,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱
中,
,
,
是
的中点,△
是等腰三角形,
为
的中点,
为
上一点;
(1)若
∥平面
,求
;
(2)平面
将三棱柱
分成两个部分,求含有点
的那部分体积;
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com