精英家教网 > 高中数学 > 题目详情
8.已知a>0,b>0,且a+b=1,求$\frac{2}{a}$+$\frac{4a}{b}$的最小值.

分析 a>0,b>0,且a+b=1,可得$\frac{2}{a}$+$\frac{4a}{b}$=$\frac{2(a+b)}{a}$+$\frac{4a}{b}$=2+$\frac{2b}{a}$+$\frac{4a}{b}$,再利用基本不等式的性质即可得出.

解答 解:∵a>0,b>0,且a+b=1,
∴$\frac{2}{a}$+$\frac{4a}{b}$=$\frac{2(a+b)}{a}$+$\frac{4a}{b}$=2+$\frac{2b}{a}$+$\frac{4a}{b}$≥2+2×2$\sqrt{\frac{b}{a}×\frac{2a}{b}}$=2+4$\sqrt{2}$,当且仅当b=$\sqrt{2}a$=2-$\sqrt{2}$时取等号.
∴$\frac{2}{a}$+$\frac{4a}{b}$的最小值为2+4$\sqrt{2}$.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.
(Ⅰ)求证:平面AB1C⊥平面BDC1
(Ⅱ)求四面体AB1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a为实数,函数f(x)=alnx+x2-4x.
(1)当a=1时,求函数f(x)在x=1处的切线方程;
(2)设g(x)=(a-2)x,若?x∈[$\frac{1}{e}$,e],使得f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知O是边长为1正四面体ABCD内切球的球心,且$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$+z$\overrightarrow{AD}$(x,y,z∈R),则x+y+z=$\frac{3}{4}$.$\overrightarrow{AO}$•$\overrightarrow{AB}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.关于x的不等式|x-2|-|x-4|<a的解集非空,则实数a的取值范围为(-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx+x2-2ax+1(a为常数).
(1)讨论函数f(x)的单调性;
(2)若存在x0∈(0,1],使得对任意的a∈(-2,0],不等式2mea+f(x0)>a2+2a+4(其中e为自然对数的底数)都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=e2x-aex+2x是R上的增函数,则实数a的取值范围是(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)证明y=f(g(x))的反函数为y=g-1(f-1(x));
(2)F(x)=f(-x),G(x)=f-1(x),若G(x)的反函数是F(x),证明f(x)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设袋中有80个球,其中40个红球,40个黑球,这些球除颜色外完全相同,从中任取两球,则所取的两球同色的概率为(  )
A.$\frac{39}{79}$B.$\frac{1}{80}$C.$\frac{1}{2}$D.$\frac{41}{80}$

查看答案和解析>>

同步练习册答案