分析 根据正四面体的性质求出棱锥的高,根据等体积法求出内切球的半径,建立坐标系,求出各向量的坐标,代入坐标运算即可解出.
解答
解:设正四面体的高为AM,延长DM交BC于E,则E为BC的中点.
∴DE=$\frac{\sqrt{3}}{2}$,DM=$\frac{2}{3}DE$=$\frac{\sqrt{3}}{3}$,∴AM=$\sqrt{A{D}^{2}-D{M}^{2}}$=$\frac{\sqrt{6}}{3}$.
设内切球半径为r,则VA-BCD=$\frac{1}{3}{S}_{△BCD}•AM$=4×$\frac{1}{3}×$S△BCD•r.
∴r=$\frac{AM}{4}$=$\frac{\sqrt{6}}{12}$.∴OM=$\frac{\sqrt{6}}{12}$
以M为原点,建立如图所示的空间坐标系M-xyz,
则A(0,0,$\frac{\sqrt{6}}{3}$),B($\frac{1}{2}$,-$\frac{\sqrt{3}}{6}$,0),C(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{6}$,0),D(0,$\frac{\sqrt{3}}{3}$,0),O(0,0,$\frac{\sqrt{6}}{12}$).
∴$\overrightarrow{AO}$=(0,0,-$\frac{\sqrt{6}}{4}$),$\overrightarrow{AB}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{6}$,-$\frac{\sqrt{6}}{3}$),$\overrightarrow{AC}$=(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{6}$,-$\frac{\sqrt{6}}{3}$),$\overrightarrow{AD}$=(0,$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{6}}{3}$).
∵$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$+z$\overrightarrow{AD}$,
∴$\left\{\begin{array}{l}{\frac{1}{2}x-\frac{1}{2}y=0}\\{-\frac{\sqrt{3}}{6}x-\frac{\sqrt{3}}{6}y+\frac{\sqrt{3}}{3}z=0}\\{-\frac{\sqrt{6}}{3}x-\frac{\sqrt{6}}{3}y-\frac{\sqrt{6}}{3}z=-\frac{\sqrt{6}}{4}}\end{array}\right.$,解得x=y=z=$\frac{1}{4}$.
∴x+y+z=$\frac{3}{4}$.$\overrightarrow{AO}•\overrightarrow{AB}$=$\frac{\sqrt{6}}{4}×\frac{\sqrt{6}}{3}$=$\frac{1}{2}$.
故答案为:$\frac{3}{4}$,$\frac{1}{2}$.
点评 本题考查了平面向量在几何中的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (24+2π)cm3 | B. | (24+$\frac{4}{3}$π)cm3 | C. | (8+6π)cm3 | D. | ($\frac{16}{3}$(3+$\sqrt{2}$)+2π)cm3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (a-1)(b-1)<0 | B. | (a-1)(a-b)>0 | C. | (b-1)(b-a)<0 | D. | (b-1)(b-a)>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | Sn最大值为91 | B. | Sn最小值为91 | C. | Sn最大值为87 | D. | Sn最小值为87 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com