精英家教网 > 高中数学 > 题目详情
7.已知a,b>0且a≠1,b≠1,若logab>1,则(  )
A.(a-1)(b-1)<0B.(a-1)(a-b)>0C.(b-1)(b-a)<0D.(b-1)(b-a)>0

分析 根据对数的运算性质,结合a>1或0<a<1进行判断即可.

解答 解:若a>1,则由logab>1得logab>logaa,即b>a>1,此时b-a>0,b>1,即(b-1)(b-a)>0,
若0<a<1,则由logab>1得logab>logaa,即b<a<1,此时b-a<0,b<1,即(b-1)(b-a)>0,
综上(b-1)(b-a)>0,
故选:D.

点评 本题主要考查不等式的应用,根据对数函数的性质,利用分类讨论的数学思想是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.旋转一枚均匀的硬币,会出现(  )个基本事件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.
(Ⅰ)求证:平面AB1C⊥平面BDC1
(Ⅱ)求四面体AB1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个几何体的三视图如图所示,那么这个几何体的表面积是(  )
A.20+2$\sqrt{5}$B.20+2$\sqrt{3}$C.16+2$\sqrt{5}$D.16+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,若对任意单位向量$\overrightarrow{e}$,均有|$\overrightarrow{a}$•$\overrightarrow{e}$|+|$\overrightarrow{b}$•$\overrightarrow{e}$|≤$\sqrt{6}$,则$\overrightarrow{a}$•$\overrightarrow{b}$的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$\frac{d}{dx}$${∫}_{0}^{{e}^{-x}}$f(t)dt=ex,则f(x)=(  )
A.-x-2B.-x2C.e-2xD.-e2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a为实数,函数f(x)=alnx+x2-4x.
(1)当a=1时,求函数f(x)在x=1处的切线方程;
(2)设g(x)=(a-2)x,若?x∈[$\frac{1}{e}$,e],使得f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知O是边长为1正四面体ABCD内切球的球心,且$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$+z$\overrightarrow{AD}$(x,y,z∈R),则x+y+z=$\frac{3}{4}$.$\overrightarrow{AO}$•$\overrightarrow{AB}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)证明y=f(g(x))的反函数为y=g-1(f-1(x));
(2)F(x)=f(-x),G(x)=f-1(x),若G(x)的反函数是F(x),证明f(x)为奇函数.

查看答案和解析>>

同步练习册答案