精英家教网 > 高中数学 > 题目详情
17.旋转一枚均匀的硬币,会出现(  )个基本事件.
A.1B.2C.3D.4

分析 直接根据基本事件的定义列举即可.

解答 解:旋转一枚均匀的硬币,结果为正面朝上,或反面朝上,故共会出现2个基本事件,
故选:B.

点评 本题考查了基本事件的定义,任何两个基本事件是互斥的,任何事件(除不可能事件)都可以表示成基本事件的和,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{x^2}{{1+{x^2}}}$,
(1)求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$)的值;
(2)归纳猜想一般性结论,并给出证明;
(3)求值:f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,直线l1:y=kx(k≠0)与椭圆相交于点A,B,过点B且斜率为$\frac{1}{4}$k的直线l2与椭圆C的另一个交点为D,AD⊥AB.
(1)求椭圆C的方程;
(2)设直线l2与x轴,y轴分别相交于点M,N,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=$\sqrt{2}$CD,∠ADC=45°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A-A1C1-D的平面角的余弦值为$\frac{2\sqrt{5}}{5}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=x2+x-2alnx在[1,e]上单调递增,则实数a的取值范围是(  )
A.(-∞,$\frac{3}{2}$]B.(-∞,1]C.(-1,$\frac{3}{2}$]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)满足以下两个条件:
(1)当x≤0时,f(x)=x2+x;
(2)当x>0时,f(x)=f(x-1).
若不存在x0使得f(x0)-ax0+2<0,
则a的取值范围是(  )
A.[1+2$\sqrt{2}$,+∞)B.(-∞,1-2$\sqrt{2}$]C.[1-2$\sqrt{2}$,0]D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,在平行四边形OABC中,点A(1,-2),C(3,1),则向量$\overrightarrow{OB}$的坐标是(  )
A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示(单位:cm),则该几何体的体积是(  )
A.(24+2π)cm3B.(24+$\frac{4}{3}$π)cm3C.(8+6π)cm3D.($\frac{16}{3}$(3+$\sqrt{2}$)+2π)cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b>0且a≠1,b≠1,若logab>1,则(  )
A.(a-1)(b-1)<0B.(a-1)(a-b)>0C.(b-1)(b-a)<0D.(b-1)(b-a)>0

查看答案和解析>>

同步练习册答案