| A. | (-∞,$\frac{3}{2}$] | B. | (-∞,1] | C. | (-1,$\frac{3}{2}$] | D. | [1,+∞) |
分析 由函数f(x)在[1,e]上单调递增,可得f′(x)≥0在[1,e]上恒成立.即2x+1-$\frac{2a}{x}$≥0,x∈[1,e]?a≤2x2min,x∈[1,e].利用二次函数的单调性求出即可.
解答 解:函数f(x)=x2+x-2alnx,(x∈[1,e]),f′(x)=2x+1-$\frac{2a}{x}$,
∵函数f(x)在[1,e]上单调递增,
∴f′(x)≥0在[1,e]上恒成立.
∴2x+1-$\frac{2a}{x}$≥0,x∈[1,e]?a≤$\frac{1}{2}$(2x2+x)min,x∈[1,e].
令g(x)=$\frac{1}{2}$(2x2+x),则g(x)在[1,e]单调增函数.
∴g(x)≤g(1)=$\frac{3}{2}$.
∴a≤$\frac{3}{2}$.
故选:A.
点评 熟练掌握利用导数研究函数的单调性、等价转化、二次函数的性质等是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{12}$ | B. | $\frac{5}{12}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 物理 | 化学 | 生物 | 信息技术 | |
| 周二 | $\frac{3}{4}$ | $\frac{1}{2}$ | $\frac{2}{3}$ | $\frac{1}{4}$ |
| 周四 | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{2}$ |
| 周五 | $\frac{2}{3}$ | $\frac{1}{3}$ | $\frac{1}{4}$ | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com