精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N+).
(Ⅰ)令bn=a2n,求证{bn}是等差数列,并求{bn}的通项公式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)求数列{an}的前n项和Sn
考点:数列的求和,数列递推式
专题:
分析:(I)利用等差数列的通项公式即可得出;
(II)对n分类讨论利用等差数列的前n项和公式即可得出.
解答: 解:(Ⅰ)n≥2时bn-bn-1=a2n-a2n-2=2,
∴{bn}是等差数列,
且b1=a2=2,
∴bn=2n.
(Ⅱ)∵an+2-an=1+(-1)n(n∈N+)
当n为奇数时,an+2-an=0(n∈N+),即an+2=an
∵a1=1,∴a1=a3=…=a2k-1=1  (k∈N*)
故当n为奇数时,an=1;
当n为偶数时,an=b
n
2
=n

∴an的通项公式为an=
1,n为奇数
n,n为偶数

(Ⅲ) 当n为偶数时,Sn=1+2+1+4+…+1+n=
n
2
+
n
2
(2+n)
2
=
n2+4n
4

当n为奇数时,Sn=Sn-1+1=
(n-1)2+4(n-1)
4
+1=
(n+1)2
4

Sn=
(n+1)2
4
n为奇数
n2+4n
4
n为偶数
点评:本题考查了等差数列与等比数列的通项公式性质、等差数列的前n项和公式,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在原点O,半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0),其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围;
(3)证明:如果在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,那么l1,l2互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1
x2
a2
-8y2=1(a>0)的离心率是
2
,抛物线C2:y2=2px的准线过C1的左焦点.
(1)求抛物线C2的方程;
(2)若A(x1,y1),B(x2,y2),C(x3,4)是C2上三点,且CA⊥CB,证明:直线AB过定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分图象如图,令an=f(
6
),则a1+a2+a3+…+a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)=
m-g(x)
1+g(x)
的定义域为R,其中y=g(x)为指数函数且过点(2,4).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)若对任意的t∈[0,5],不等式f(t2+2t+k)+f(-2t2+2t-5)>0解集非空,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,b=7,c=3,B=60°,则a=(  )
A、5
B、6
C、4
3
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(
1
2
2x+2×(
1
2
x (x≤-1)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,则下列判断中正确的是(  )
A、a=30,b=25,A=150°,有一解
B、a=7,b=14,A=30°,有两解
C、a=6,b=9,A=45°,有两解
D、b=9,c=10,B=60°,无解

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3-bx+2,a,b∈R,若f(-3)=-1,则f(3)=
 

查看答案和解析>>

同步练习册答案