精英家教网 > 高中数学 > 题目详情
2.已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列命题:
①若m∥β,n∥β,m、n?α,则α∥β;
②若α⊥γ,β⊥γ,α∩β=m,n?γ,则m⊥n;
③若m⊥α,α⊥β,m∥n,则n∥β;
④若n∥α,n∥β,α∩β=m,那么m∥n;
其中真命题的个数是(  )
A.1B.2C.3D.4

分析 ①根据面面平行的判定定理进行判断.
②根据面面垂直的性质进行判断.
③根据线面平行的判定定理进行判断.
④根据线面平行的性质进行判断.

解答 解:①若m∥β,n∥β,m、n?α,则α∥β或α与β相交;故①错误,
②若α⊥γ,β⊥γ,α∩β=m,则m⊥γ,∵n?γ,∴m⊥n成立,故②正确;
③若m⊥α,α⊥β,m∥n,则n∥β或n?β;故③错误,
④若n∥α,n∥β,α∩β=m,那么m∥n成立,故④正确;
故选:B.

点评 本题主要考查空间直线平行,垂直的位置关系的判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数y=$\sqrt{(\frac{1}{2})^{3x-1}-1}$.
(1)求它的定义域和单调区间;
(2)若x∈[-$\frac{2}{3}$,-$\frac{1}{3}$]时,求它的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$(b<0)的值域为[1,3].
(1)求b,c的值;
(2)判断f(x)在区间[-1,1]上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.抛物线y2=x上的点到直线x-2y+3=0的距离的最小值是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A={x|-x2+2x+8≥0},B={x|x2-(4k+2)x+3k+2<0},若C={x∈Z|x∈A∩B}={-2},求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简$\sqrt{\frac{{a}^{2}}{b}\sqrt{\frac{{b}^{3}}{a}\sqrt{\frac{a}{{b}^{3}}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.据悉2010奥林匹克数学竞赛中国国家队选拔赛于三月下旬在江西进行,我校有三名学生参加选拔赛,已知这三名学生能入选国家队的概率分别为0.3,0.4,0.5,ξ表示我校入选国家队的人数,则Eξ=1.2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在极坐标系Ox中,曲线C1的方程为ρ=2sinθ,C2的方程ρ=8sinθ,射线θ=$\frac{π}{3}$与C1的异于极点的交点为A,与C1的异于极点的交点为B,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数y=arccos(x2-$\frac{1}{4}$)的最大值α,最小值β,cos[π-(α+β)]=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案