分析 (Ⅰ)由条件利用余弦函数的图象特征求出ω,可得f(x)的解析式,再根据f($\frac{1}{6}$)=1求得B,再利用条件求得A,从而△ABC是直角三角形,从而计算△ABC的面积S.
(Ⅱ)利用正弦定理求得△ABC的外接圆半径R,再化减S+3$\sqrt{3}$cosBcosC为3$\sqrt{3}$cos(B-C),从而求得它的最大值.
解答 解:(Ⅰ)∵f(x)=2cos(ωx+B)(ω>0)的图象与直线y=2相邻两个交点间的最短距离为T,
∴T=2,即:$\frac{2π}{ω}=2$,解得ω=π,故f(x)=2cos(πx+B).
又$f(\frac{1}{6})=2cos(\frac{π}{6}+B)=1$,即:$cos(\frac{π}{6}+B)=\frac{1}{2}$,∵B是△ABC的内角,∴$B=\frac{π}{6}$,
设△ABC的三个内角的对边分别为a,b,c,
∵$\frac{{\sqrt{3}}}{2}\overrightarrow{AB}•\overrightarrow{AC}=S$,∴$\frac{{\sqrt{3}}}{2}bccosA=\frac{1}{2}bcsinA$,
解得$tanA=\sqrt{3}$,$A=\frac{π}{3}$,从而△ABC是直角三角形,
由已知$|{\overrightarrow{AC}-\overrightarrow{AB}}|=3$得,$|{\overrightarrow{BC}}|=a=3$,从而$b=\sqrt{3}$,${S_{△ABC}}=\frac{1}{2}ab=\frac{{3\sqrt{3}}}{2}$.
(Ⅱ)由(Ⅰ)知$A=\frac{π}{3},a=3$,
设△ABC的外接圆半径为R,则2R=$\frac{a}{sinA}$=$\frac{3}{\frac{\sqrt{3}}{2}}$=2$\sqrt{3}$,解得R=$\sqrt{3}$,
∴S+3$\sqrt{3}$cosBcosC=$\frac{1}{2}$bcsinA+3$\sqrt{3}$cosBcosC=$\frac{\sqrt{3}}{4}$bc+3$\sqrt{3}$cosBcosC
=3$\sqrt{3}$sinBsinC+3$\sqrt{3}$cosBcosC=3$\sqrt{3}$cos(B-C),
故$S+3\sqrt{3}cosBcosC$的最大值为$3\sqrt{3}$.
点评 本题主要考查余弦函数的图象特征,正弦定理,两个向量的数量积的运算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n≤2014 | B. | n≤2015 | C. | n≤2016 | D. | n≤2018 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有最大值2,无最小值 | B. | 有最小值2,无最大值 | ||
| C. | 有最小值$\frac{1}{2}$,最大值2 | D. | 既无最小值,也无最大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,+∞) | B. | (-2,+∞) | C. | (2,+∞) | D. | (3,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com