精英家教网 > 高中数学 > 题目详情
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=19,a5+b3=9,则数列{anbn}的前n项和Sn=
 
考点:等差数列与等比数列的综合,数列的求和
专题:计算题
分析:先根据等差数列、等比数列的通项,结合条件,可求数列{an},{bn}的通项公式,这样就可以利用错位相消法,求出数列{anbn}的前n项和.
解答: 解:设{an}的公差为d,{bn}的公比为q,则由已知条件得
1+2d+q4=19①
1+4d+q2=9②

①×2-②:2q4-q2-28=0,∴q2=4
∵q>0,∴q=2
代入②可得:d=1
∴an=n,bn=2n-1
令cn=anbn,则cn=n×2n-1
∴S=1+2×2+…+n×2n-1
①×2:2S=1×2+2×22+…+n×2n
①-②:-S=1+2+…+2n-1-n×2n
∴-S=
1-2n
1-2
-n×2n
∴S=(n-1)•2n+1
故答案为:(n-1)•2n+1
点评:等差数列、等比数列通项的求解通常运用基本量法,求数列的和,一定要弄清数列通项的特征,从而选用适当的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集I=Z,集合A={x|x=2k+1,k∈Z},B={x|x=4k+1,k∈Z},则有(  )
A、I=(CIA)∪B
B、I=(CIB)∪B
C、I=(CIA)∪(CIB)
D、I=A∪B

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[10,20]内的所有实数中,随机取一个实数a,则a<15的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin3xcosx+cos3xsinx+
3
sin2x

(1)求函数f(x)的单调递减区间;
(2)已知△ABC的三边a、b、c对应角为A、B、C,且三角形的面积为S,若
3
2
AB
BC
=S,求f(A)
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P是双曲线
x2
9
-
y2
16
=1
右支上一点,F1,F2分别是该双曲线的左,右焦点,点M为线段PF2的中点.若△OMF2的面积为10,则点P到该双曲线的左准线的距离为(  )
A、3
2
+
9
5
B、3
5
+
9
5
C、3
5
+
18
5
D、3
2
+
18
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,a2、a3、a5分别是等比数列{cn}的第4项、第3项、第2项,且a2=8,公差d≠0.
(1)求等比数列{cn}的通项;
(2)设bn=log2cn,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

下列计算正确的是(  )
A、a6÷a6=0
B、(-bc)4÷(-bc)2=-bc
C、y4+y6=y10
D、(ab44=a4b16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为锐角,且tanα=
2
-1,函数f(x)=x2tan2α+x•sin(2α+
π
4
),则f(-1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足
(Ⅰ)存在闭区间A=
π
3
,B=x,C>0
,使得任取x1∈[a,b],都有f(x1)=c(c是常数);
(Ⅱ)对于D内任意x2,当x2∉[a,b]时总有f(x2)>c,则称f(x)为“平底型”函数.
(1)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)若x=4时,f(x)是“平底型”函数,求m和n满足的条件,并说明理由.

查看答案和解析>>

同步练习册答案