精英家教网 > 高中数学 > 题目详情
在区间[10,20]内的所有实数中,随机取一个实数a,则a<15的概率是
 
考点:几何概型
专题:计算题
分析:在区间[10,20]内的所有实数不可数,属于几何概型,我们分别计算出区间[10,20]的长度,区间[10,15)的长度,代入几何概型概率计算公式,即可得到答案.
解答: 解:由于试验的全部结果构成的区域长度为20-10=10,
构成该事件的区域长度为15-10=5,
所以概率为
5
10
=
1
2

故答案为:
1
2
点评:本题主要考查几何概型的概率计算,其中根据已知条件计算出基本事件总数对应的几何量的大小,和满足条件的几何量的大小是解答本题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在矩形ABCD中,已知AB=a,BC=b(b<a),AB,AD,CD,CB上分别截取AE,AH,CG,CF都等于x,记四边形EFGH的面积为f(x).
(1)求f(x)的解析式和定义域;
(2)当x为何值时,四边形EFGH的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足不等式
0≤x≤2
0≤y≤4-x2
,则z=2x+y的最大值为(  )
A、1B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的首项a1=2011,公比q=-
1
2
,数列{an}前n项和记为Sn,前n项积记为Tn
(1)证明:S2≤Sn≤S1
(2)判断Tn与Tn+1的大小,并求n为何值时,Tn取得最大值;
(3)证明:若数列{an}中的任意相邻三项按从小到大排列,则总可以使其成等差数列;若所有这些等差数列的公差按从小到大的顺序依次记为d1,d2,…,dn,则数列{dn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间(0,1)内任取两个实数,则它们的和大于
1
2
而小于
3
2
的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

光线l过点P(1,-1),经y轴反射后与圆C:(x-4)2+(y-4)2=1相切,求光线l所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如右,那么可得这个几何体的体积是(  )
A、
1
3
B、
2
3
C、
4
3
D、
8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=19,a5+b3=9,则数列{anbn}的前n项和Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某先生居住在城镇的A处,准备开车到单位C处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如下图(例如,路段AB发生堵车事件的概率为
1
10
,路段BC发生堵车事件的概率为
1
15
).
(1)请你为其选择一条由A到C的路线,使得途中发生堵车事件的概率最小;
(2)若记路线A→B→C中遇到堵车次数为随机变量ξ,求ξ的数学期望Eξ.

查看答案和解析>>

同步练习册答案