ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÊ×Ïîa1=2011£¬¹«±Èq=-
1
2
£¬ÊýÁÐ{an}ǰnÏîºÍ¼ÇΪSn£¬Ç°nÏî»ý¼ÇΪTn£®
£¨1£©Ö¤Ã÷£ºS2¡ÜSn¡ÜS1£»
£¨2£©ÅжÏTnÓëTn+1µÄ´óС£¬²¢ÇónΪºÎֵʱ£¬TnÈ¡µÃ×î´óÖµ£»
£¨3£©Ö¤Ã÷£ºÈôÊýÁÐ{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬Ôò×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ»ÈôËùÓÐÕâЩµÈ²îÊýÁеĹ«²î°´´ÓСµ½´óµÄ˳ÐòÒÀ´Î¼ÇΪd1£¬d2£¬¡­£¬dn£¬ÔòÊýÁÐ{dn}ΪµÈ±ÈÊýÁУ®
¿¼µã£ºµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ÛºÏ,µÈ²îÊýÁеÄÐÔÖÊ,µÈ±ÈÊýÁеÄÐÔÖÊ
רÌ⣺×ÛºÏÌâ
·ÖÎö£º£¨1£©ÓÉÌâÉèÖªSn=S1+
a2[1-(-
1
2
)
n-1
]
1-(-
1
2
)
=S1-
1
3
a1[1-(-
1
2
)n-1]¡ÜS1
£¬ÓÉ´ËÄܹ»Ö¤Ã÷S2¡ÜSn¡ÜS1£®
£¨2£©ÓÉ
|Tn+1|
|Tn|
=
a1a2¡­anan+1
a1a2¡­an
=|an+1|=
2011
2n
£¬Öª|Tn|max=|T11|£¬ÓÉ´ËÄܹ»ÍƵ¼³önΪºÎֵʱ£¬TnÈ¡µÃ×î´óÖµ£®
£¨3£©ÓÉan=2011£¨-
1
2
£©n-1£¬Öª|an|ËænÔö´ó¶ø¼õС£¬anÆæÊýÏî¾ùÕý£¬Å¼ÊýÏî¾ù¸º£®Óɴ˽øÐзÖÀàÌÖÂÛ£¬Äܹ»Ö¤Ã÷ÊýÁÐ{dn}ΪµÈ±ÈÊýÁУ®
½â´ð£º £¨1£©Ö¤£ºSn=S1+
a2[1-(-
1
2
)
n-1
]
1-(-
1
2
)
=S1-
1
3
a1[1-(-
1
2
)n-1]¡ÜS1
£¬
µ±n=1ʱ£¬µÈºÅ³ÉÁ¢¡­2·Ö
Sn=S2+
a3[1-(-
1
2
)
n-2
]
1-(-
1
2
)
=S2+
1
6
a1[1-(-
1
2
)n-2]¡ÝS2
£¬
µ±n=2ʱ£¬µÈºÅ³ÉÁ¢
¡àS2¡ÜSn¡ÜS1£®¡­4·Ö
£¨2£©½â£º¡ß
|Tn+1|
|Tn|
=
a1a2¡­anan+1
a1a2¡­an
=|an+1|=
2011
2n
£¬
¡àµ±n¡Ü10ʱ£¬|Tn+1|£¾|Tn|£¬
µ±n¡Ý11ʱ£¬|Tn+1|£¼|Tn|£¬
¹Ê|Tn|max=|T11|¡­7·Ö
ÓÖT10£¼0£¬T11£¼0£¬T9£¾0£¬T12£¾0£¬
¡àTnµÄ×î´óÖµÊÇT9ºÍT12ÖеĽϴóÕߣ¬
¡ß
T12
T9
=a10a11a12=[2011£¨-
1
2
£©10]3£¾1£¬
¡àT12£¾T9
Òò´Ëµ±n=12ʱ£¬Tn×î´ó£®¡­10·Ö
£¨3£©Ö¤£º¡ßan=2011£¨-
1
2
£©n-1£¬
¡à|an|ËænÔö´ó¶ø¼õС£¬anÆæÊýÏî¾ùÕý£¬Å¼ÊýÏî¾ù¸º
¢Ùµ±kÊÇÆæÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak+1£¬ak+2£¬ak£¬
Ôòak+1+ak=a1(-
1
2
)k+a1(-
1
2
)k-1=
a1
2k
£¬2ak+2=2a1(-
1
2
)k+1=
a1
2k
£¬
¡àak+1+ak=2ak+2£¬Òò´Ëak+1£¬ak+2£¬ak³ÉµÈ²îÊýÁУ¬
¹«²îdk=ak+2-ak+1=a1[(-
1
2
)k+1-(-
1
2
)k]=
3a1
2k+1
¡­12·Ö
¢Úµ±kÊÇżÊýʱ£¬Éè{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁÐΪak£¬ak+2£¬ak+1£¬
Ôòak+1+ak=a1(-
1
2
)k+a1(-
1
2
)k-1=-
a1
2k
£¬2ak+2=2a1(-
1
2
)k+1=-
a1
2k
£¬
¡àak+1+ak=2ak+2£¬Òò´Ëak£¬ak+2£¬ak+1³ÉµÈ²îÊýÁУ¬
¹«²îdk=ak+2-ak=a1[(-
1
2
)k+1-(-
1
2
)k-1]=
3a1
2k+1
¡­14·Ö
×ÛÉÏ¿ÉÖª£¬{an}ÖеÄÈÎÒâÏàÁÚÈýÏî°´´ÓСµ½´óÅÅÁУ¬×Ü¿ÉÒÔʹÆä³ÉµÈ²îÊýÁУ¬ÇÒdk=
3a1
2k+1

¡ß
dn-1
dn
=2
£¬
¡àÊýÁÐ{dn}ΪµÈ±ÈÊýÁУ®¡­16·Ö£®
µãÆÀ£º±¾Ì⿼²éÊýÁС¢²»µÈʽ֪ʶ£¬¿¼²é»¯¹éÓëת»¯¡¢·ÖÀàÓëÕûºÏµÄÊýѧ˼Ï룬ÅàÑøÑ§ÉúµÄ³éÏó¸ÅÀ¨ÄÜÁ¦¡¢ÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦ºÍ´´ÐÂÒâʶ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©ºÍg£¨x£©Âú×ãg£¨x£©¡Ù0£¬f'£¨x£©•g£¨x£©£¾f£¨x£©•g'£¨x£©£¬f£¨x£©=ax•g£¨x£©£¬
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
£®Áîan=
f(n)
g(n)
£¬ÔòʹÊýÁÐ{an}µÄǰnÏîºÍSn³¬¹ý100µÄ×îС×ÔÈ»ÊýnµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ȫ¼¯I=Z£¬¼¯ºÏA={x|x=2k+1£¬k¡ÊZ}£¬B={x|x=4k+1£¬k¡ÊZ}£¬ÔòÓУ¨¡¡¡¡£©
A¡¢I=£¨CIA£©¡ÈB
B¡¢I=£¨CIB£©¡ÈB
C¡¢I=£¨CIA£©¡È£¨CIB£©
D¡¢I=A¡ÈB

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÉÖ±Ïßy=x-3ÉϵĵãÏòÔ²£¨x+2£©2+£¨y-3£©2=1ÒýÇÐÏߣ¬ÔòÇÐÏß³¤µÄ×îСֵΪ£¨¡¡¡¡£©
A¡¢
31
B¡¢4
2
C¡¢
33
D¡¢
29

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚ¼«×ø±êϵ£¨¦Ñ£¬¦È£©£¨0¡Ü¦È¡Ü2¦Ð£©ÖУ¬µãP£¨2£¬
5¦Ð
4
£© µ½Ö±ÏߦÑcos£¨¦È-
¦Ð
4
£©=
2
µÄ¾àÀëµÈÓÚ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

²»µÈʽ
1-x
2x+1
¡Ý0
µÄ½â¼¯ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÇø¼ä[10£¬20]ÄÚµÄËùÓÐʵÊýÖУ¬Ëæ»úȡһ¸öʵÊýa£¬Ôòa£¼15µÄ¸ÅÂÊÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýf(x)=sin3xcosx+cos3xsinx+
3
sin2x
£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨2£©ÒÑÖª¡÷ABCµÄÈý±ßa¡¢b¡¢c¶ÔÓ¦½ÇΪA¡¢B¡¢C£¬ÇÒÈý½ÇÐεÄÃæ»ýΪS£¬Èô
3
2
AB
BC
=S£¬Çóf(A)
µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¦ÁΪÈñ½Ç£¬ÇÒtan¦Á=
2
-1£¬º¯Êýf£¨x£©=x2tan2¦Á+x•sin£¨2¦Á+
¦Ð
4
£©£¬Ôòf£¨-1£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸