精英家教网 > 高中数学 > 题目详情
已知全集I=Z,集合A={x|x=2k+1,k∈Z},B={x|x=4k+1,k∈Z},则有(  )
A、I=(CIA)∪B
B、I=(CIB)∪B
C、I=(CIA)∪(CIB)
D、I=A∪B
考点:交、并、补集的混合运算
专题:计算题
分析:I=(CIB)∪B,(CIB)∩B=∅,这是补集的基本性质.
解答: 解:∵全集I=Z,
集合A={x|x=2k+1,k∈Z}是全体奇数,
B={x|x=4k+1,k∈Z}是除以4余1的奇数,
∴I=(CIB)∪B.
故选B.
点评:本题考查补集的基本性质的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式组
(x-y+1)(x+y-1)≥0
-2≤x≤2
表示平面区域的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在矩形ABCD中,已知AB=a,BC=b(b<a),AB,AD,CD,CB上分别截取AE,AH,CG,CF都等于x,记四边形EFGH的面积为f(x).
(1)求f(x)的解析式和定义域;
(2)当x为何值时,四边形EFGH的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果a
1
2
=b
(a>0,且a≠1),则(  )
A、log
 
1
2
a
=b
B、log
 
b
a
=
1
2
C、log 
1
2
b=a
D、log 
1
2
a=b

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(-2,0)且垂直于直线2x-6y+l=0的直线l的方程式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
lim
x→∞
ax不存在(a>0),则
lim
x→∞
1-ax
1+ax
的值为
(  )
A、-1B、0C、1D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足不等式
0≤x≤2
0≤y≤4-x2
,则z=2x+y的最大值为(  )
A、1B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的首项a1=2011,公比q=-
1
2
,数列{an}前n项和记为Sn,前n项积记为Tn
(1)证明:S2≤Sn≤S1
(2)判断Tn与Tn+1的大小,并求n为何值时,Tn取得最大值;
(3)证明:若数列{an}中的任意相邻三项按从小到大排列,则总可以使其成等差数列;若所有这些等差数列的公差按从小到大的顺序依次记为d1,d2,…,dn,则数列{dn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=19,a5+b3=9,则数列{anbn}的前n项和Sn=
 

查看答案和解析>>

同步练习册答案