精英家教网 > 高中数学 > 题目详情
不等式组
(x-y+1)(x+y-1)≥0
-2≤x≤2
表示平面区域的面积为
 
考点:二元一次不等式(组)与平面区域
专题:不等式的解法及应用
分析:根据二元一次不等式组作出平面区域,然后根据区域的形状求出其面积即可.
解答: 解:∵
(x-y+1)(x+y-1)≥0
-2≤x≤2

x-y+1≥0
x+y-1≥0
-2≤x≤2
x-y+1≤0
x+y-1≤0
-2≤x≤2

然后根据二元一次不等式组画出区域图,如右图
根据图象可知不等式组
(x-y+1)(x+y-1)≥0
-2≤x≤2

表示的平面区域为两个全等的三角形,
可以拼成边长为4的正方形的一半,
所以面积为S=
1
2
×42=8
故答案为:8.
点评:本题主要考查了二元一次不等式(组)与平面区域,以及图象面积的度量,解题的关键是作图,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
p
=(x,m),
q
=(x+a,1)
,二次函数f(x)=
p
q
+1
,关于x的不等式f(x)>(2m-1)x+1-m2的解集为(-∞,m)∪(m+1,+∞),其中m为非零常数,设g(x)=
f(x)
x-1

(Ⅰ)求a的值;
(Ⅱ)若存在一条与y轴垂直的直线和函数Γ(x)=g(x)-x+lnx的图象相切,且切点的横坐标x0满足|x0-1|+x0>3,求实数m的取值范围;
(Ⅲ)当实数k取何值时,函数φ(x)=g(x)-kln(x-1)存在极值?并求出相应的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表
组别 分组 频数 频率
第1组 [50,60) 8 0.16
第2组 [60,70) a
第3组 [70,80) 20 0.40
第4组 [80,90) 0.08
第5组 [90,100] 2 b
合计
(1)写出a,b,x,y的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动,求所抽取的2名同学来自同一组的概率;
(3)在(2)的条件下,设ξ表示所抽取的2名同学中来自第5组的人数,求ξ的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线mx+3y-4=0与圆(x+2)2+y2=5相交于A、B两点,若|AB|=2,则实数m的值为(  )
A、
5
2
B、0或-
5
4
C、±
5
2
D、
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

有如下几个命题:
①若sin2A=sin2B,则△ABC是等腰三角形;
②函数y=sinx+
4
sinx
(0<x<π)最小值为4;
③若等差数列{an}前n项和为Sn,则三点(10,
S10
10
),(100,
S100
100
),(110,
S101
110
)共线;
④若a,b为正实数,代数式
a2
b2
+
b2
a2
-6(
a
b
+
b
a
)+10
的值恒非负;
其中正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

点A(1,2,3)在坐标平面yOz内的射影是点B的坐标是(  )
A、(0,2,3)
B、(1,0,3)
C、(1,2,0)
D、(1,0,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

证明下列不等式
(1)a2+b2+5≥2(2a-b)(a,b∈R) 
(2)
b+c
a
+
c+a
b
+
a+b
c
≥6
(a,b,c为正实数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)和g(x)满足g(x)≠0,f'(x)•g(x)>f(x)•g'(x),f(x)=ax•g(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
.令an=
f(n)
g(n)
,则使数列{an}的前n项和Sn超过100的最小自然数n的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集I=Z,集合A={x|x=2k+1,k∈Z},B={x|x=4k+1,k∈Z},则有(  )
A、I=(CIA)∪B
B、I=(CIB)∪B
C、I=(CIA)∪(CIB)
D、I=A∪B

查看答案和解析>>

同步练习册答案