精英家教网 > 高中数学 > 题目详情
14.如果函数y=|cos(ωx+$\frac{π}{4}$)|的图象关于直线x=π对称,则正实数ω的最小值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

分析 由题意可得ωπ+$\frac{π}{4}$=$\frac{kπ}{2}$,k∈z,由此求得正实数ω的最小值.

解答 解:∵函数y=|cos(ωx+$\frac{π}{4}$)|的图象关于直线x=π对称,∴ωπ+$\frac{π}{4}$=$\frac{kπ}{2}$,k∈z,即ω=$\frac{2k-1}{4}$.
由此求得正实数ω的最小值是$\frac{1}{4}$,
故选:A.

点评 本题主要考查余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.中心在原点,焦点在x轴上的双曲线C的离心率为$\sqrt{2}$,直线l与双曲线C交于A,B两点,线段AB中点M在第一象限,并且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则直线l的斜率为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若cosα=$\frac{1}{3}$,则sin$({\frac{π}{2}+2α})$-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{y^2}{m}-{x^2}$=1(m>0)的一个焦点与抛物线y=$\frac{1}{8}{x^2}$的焦点重合,则此双曲线的离心率为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如图所示:横轴为投资时间,纵轴为回报,根据以上信息,若使回报最多,下列说法错误的是(  )
A.投资3天以内(含3天),采用方案一B.投资4天,不采用方案三
C.投资6天,采用方案二D.投资10天,采用方案二

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=|x-$\frac{1}{a}$|+|x+a|≥m.则m的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,ABFC-A1B1F1C1为正四棱柱,D为BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,BC1⊥AB1,BC1⊥A1C.求证:
(Ⅰ)平面A1BD1∥平面AC1D;
(Ⅱ)BC1⊥B1D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图是某几何体的三视图(单位:cm),则该几何体的表面积是14+2$\sqrt{13}$cm2,体积为4cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共n(n=13k,k∈N+)只,现在盒子上开一小孔,每次只能一只昆虫飞出(任意一只昆虫等可能地飞出),已知有2只昆虫先后飞出时,飞出的至少有1只是蜜蜂的概率是$\frac{25}{39}$.
(Ⅰ)若盒子中共有13只昆虫:
①求蜜蜂有几只;
②从盒子先后任意飞出3只昆虫,记飞出蜜蜂的只数为X,求随机变量X的分布列与期望E(X);
(Ⅱ)若只有1只昆虫飞出时,飞出的是蝴蝶的概率是$\frac{5}{13}$.证明:从盒子先后任意飞出2只昆虫,至少有1只蝴蝶飞出的概率不大于$\frac{25}{39}$,并指出盒子中哪种昆虫的只数最少.

查看答案和解析>>

同步练习册答案