精英家教网 > 高中数学 > 题目详情
2.已知双曲线$\frac{y^2}{m}-{x^2}$=1(m>0)的一个焦点与抛物线y=$\frac{1}{8}{x^2}$的焦点重合,则此双曲线的离心率为$\frac{{2\sqrt{3}}}{3}$.

分析 根据双曲线和抛物线的性质,求出焦点坐标,然后求出m=a2=3,即可求出双曲线的离心率.

解答 解:∵双曲线$\frac{y^2}{m}-{x^2}$=1(m>0)的一个焦点与抛物线y=$\frac{1}{8}{x^2}$的焦点重合,抛物线y=$\frac{1}{8}{x^2}$的焦点坐标为(0,2),
∴c=2,
∴1+m=4,
即m=a2=3,
∴a=$\sqrt{3}$,
∴e=$\frac{c}{a}$=$\frac{{2\sqrt{3}}}{3}$.
故答案为:$\frac{{2\sqrt{3}}}{3}$.

点评 本题主要考查了双曲线和抛物线的性质,考查双曲线的离心率,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.复数z满足(1+i)z=3+i,则复数z在复平面内所对应的点的坐标是(  )
A.(1,-2)B.(-2,1)C.(-1,2)D.(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=sin(2015x+$\frac{3π}{8}$)+sin(2015x-$\frac{π}{8}$)的最大值为A,若存在实数x1,x2,使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1-x2|的最小值为(  )
A.$\frac{\sqrt{2}π}{2015}$B.$\frac{2\sqrt{2}π}{2015}$C.$\frac{2π}{2015}$D.$\frac{4π}{2015}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在直三棱柱ABC-A1B1C1中,已知∠BAC=90°,AB=AC=1,AA1=3,点E,F分别在棱BB1,CC1上,且C1F=$\frac{1}{3}$C1C,BE=$\frac{1}{3}$BB1
(Ⅰ)证明:AC⊥平面A1ABB1
(Ⅱ)求直线AA1与平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2}{3}({π+1})$B.$\frac{4}{3}$(π+1)C.$\frac{4}{3}$(π+$\frac{1}{2}$)D.$\frac{2}{3}$(π+$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(m,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m等于(  )
A.$\sqrt{2}$B.$\sqrt{2}$或$-\sqrt{2}$C.$-\sqrt{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果函数y=|cos(ωx+$\frac{π}{4}$)|的图象关于直线x=π对称,则正实数ω的最小值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为 4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为(  )
A.2B.$\sqrt{5}$C.$\sqrt{10}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线y2=2px(p>0)的焦点F到准线的距离为4,若抛物线上一点P到y轴的距离是1,则|PF|等于(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案