分析 (Ⅰ)证明:直三棱柱ABC-A1B1C1中,A1A⊥面ABC,又AC?面ABC,∴A1A⊥AC,从而证得命题
(Ⅱ)在△AEF中,AE=$\sqrt{2}$,EF=$\sqrt{3}$,AF=$\sqrt{5}$则AE2+EF2=AF2,得到垂直关系,找到高,继而求得正弦值.
解答 解:(Ⅰ)证明:直三棱柱ABC-A1B1C1中,A1A⊥面ABC,又AC?面ABC,∴A1A⊥AC
且A1A∩AB=A,又A1A,AB?面A1AB∴AC⊥面A1ABB1
(Ⅱ)在△AEF中,AE=$\sqrt{2}$,EF=$\sqrt{3}$,AF=$\sqrt{5}$则AE2+EF2=AF2,
因此∠AEF=90°,∴${S}_{△AEF}=\frac{\sqrt{6}}{2}$又可证BA⊥面A1ACC1,
∴B与面A1AF之间的距离为1,
又可证BE∥面A1AF,
∴E与面A1AF之间的距离为1,
∴${V}_{E-{A}_{1}AF}=\frac{1}{3}×\frac{1}{2}×3×1=\frac{1}{2}$
设A1与面AEF之间的距离为h,则$\frac{1}{3}×\frac{\sqrt{6}}{2}×h=\frac{1}{2}$
得h=$\frac{\sqrt{6}}{2}$,
∴AA1与面AEF所成的角的正弦值为$\frac{h}{A{A}_{1}}=\frac{\sqrt{6}}{6}$
点评 本题主要考查立体几何中的线面关系的证明和线面角的求解,属中档题型,高考常考题型.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{5}$ | B. | $\frac{6π}{5}$ | C. | $\frac{9π}{5}$ | D. | $\frac{12π}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com