精英家教网 > 高中数学 > 题目详情
1.当x>0时,不等式x2+ax+3>0恒成立,则实数a的取值范围是(  )
A.(-2$\sqrt{3}$,2$\sqrt{3}$)B.(2$\sqrt{3}$,+∞)C.(-2$\sqrt{3}$,0)∪(2$\sqrt{3}$,+∞)D.(-2$\sqrt{3}$,+∞)

分析 运用参数分离,再结合基本不等式,即可求出实数a的取值范围.

解答 解:∵当x>0时,不等式x2+ax+3>0恒成立,
∴a>-(x+$\frac{3}{x}$),
∵x>0,∴x+$\frac{3}{x}$≥2$\sqrt{3}$(x=$\frac{3}{x}$时,取等号),
∴-(x+$\frac{3}{x}$)≤-2$\sqrt{3}$,
∴a>-2$\sqrt{3}$,
故选:D.

点评 本题考查二次不等式恒成立问题的解法,注意运用参数分离和基本不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在锐角△ABC中,角A,B,C的对边分别为a,b,c.若2asinB=$\sqrt{3}$b.
(1)求角A的大小;
(2)若b=3,△ABC的面积为3$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足$\left\{\begin{array}{l}x-2y+4≥0\\ 2x+y-2≥0\\ 3x-y-3≤0\end{array}\right.$,则x2+y2的取值范围是(  )
A.[$\frac{4}{5}$,13]B.[$\frac{{2\sqrt{5}}}{5}$,$\sqrt{13}$]C.[0,4]D.[1,$\sqrt{13}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M={x∈Z|0≤x≤4},N={x|1<log2x<2},则M∩N=(  )
A.{0,1}B.{2,3}C.{3}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用数学归纳法证明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$>$\frac{13}{24}$(n>2,且n∈N*)的过程中,由n=k递推到n=k+1时,不等式左边(  )
A.增加了一项$\frac{1}{2(k+1)}$
B.增加了两项$\frac{1}{2k+1}$,$\frac{1}{2(k+1)}$
C.增加了B中的两项,但又减少了另一项$\frac{1}{k+1}$
D.增加了A中的一项,但又减少了另一项$\frac{1}{k+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两名射击运动员进行射击比赛,射击次数相同,已知两名运动员击中的环数X稳定在7环、8环、9环、10环,他们比赛成绩的统计结果如下:
78910
0.20.150.3
0.20.20.35
请你根据上述信息,解决下列问题:
(Ⅰ)估计甲、乙两名射击运动员击中的环数都不少于9环的概率;
(Ⅱ)若从甲、乙运动员中只能挑选一名参加某大型比赛,请你从随机变量均值意义的角度,谈谈让谁参加比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数在(0,+∞)上为增函数的是(  )
A.y=|x-1|B.y=e-xC.y=ln(x+1)D.y=-x(x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c是角A、B、C的对边,且a=2csinA,c<a.
(1)求角C的度数;
(2)若a=$\frac{2\sqrt{3}}{3}$b,且△ABC的面积为$\frac{\sqrt{3}}{2}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且Sn是2a与-2nan的等差中项,其中a≠0.
(1)求数列{an}的前三项a1,a2,a3
(2)猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

同步练习册答案