| A. | $\frac{1}{2}$ | B. | $\frac{9}{8}$ | C. | 2 | D. | 9 |
分析 设等比数列{an}的公比为q,由题意可知,q≠1.再由已知求得公比,结合等比数列的前n项和求得$\frac{S_6}{S_3}$.
解答 解:设等比数列{an}的公比为q,由题意可知,q≠1.
∴$q=\frac{{a}_{2}+{a}_{4}}{{a}_{1}+{a}_{3}}=\frac{\frac{5}{2}}{\frac{5}{4}}=2$,
则$\frac{S_6}{S_3}$=$\frac{\frac{{a}_{1}(1-{q}^{6})}{1-q}}{\frac{{a}_{1}(1-{q}^{3})}{1-q}}=\frac{1-{q}^{6}}{1-{q}^{3}}$=1+q3=1+8=9.
故选:D.
点评 本题考查等比数列的性质,考查了等比数列的前n项和,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com