【题目】如图,三棱柱
中,
平面
,
分别为
和
的中点,
是边长为2 的正三角形,
.
![]()
(1)证明:
平面
;
(2)求二面角
的余弦值.
【答案】(1)证明见解析;(2)
.
【解析】试题分析:(1)取AB的中点H,连接HM,CH,证明四边形CDMH是平行四边形得出DM∥CH,从而有DM∥平面ABC;
(2)取BB1中点E,以E为原点建立坐标系,求出两半平面的法向量,计算法向量的夹角即可得出二面角的大小.
试题解析:(1)证明:取
的中点
,连接
,
∵
分别为
和
的中点,
∴
,
,∴
,
,
则四边形
是平行四边形,则
.
∵
平面
,
平面
,∴
平面
;
(2)取
中点
,∵
为等边三角形, ∴
.
又
平面
,
,∴
平面
,
建立以
为坐标原点,
分别为
轴的空间直角坐标系如图:
![]()
则
,
,
则设平面
的法向量为
,
,
,
则
,即![]()
令
,则
,即
,
平面
的法向量为
,
,
,
则
,得
,即
,
令
,则
,即
,
则
,
即二面角
的余弦值是
.
科目:高中数学 来源: 题型:
【题目】已知点
为圆
的圆心,
是圆上动点,点
在圆的半径
上,且有点
和
上的点
,满足![]()
(1)当
在圆上运动时,求点
的轨迹方程;
(2)若斜率为
的直线
与圆
相切,与(1)中所求点
的轨迹教育不同的两点
是坐标原点,且
时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M为△ABC的中线AD的中点,过点M的直线分别交两边AB、AC于点P、Q,设
=x
,
,记y=f(x).![]()
(1)求函数y=f(x)的表达式;
(2)设g(x)=x3+3a2x+2a,x∈[0,1].若对任意x1∈[
,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据气象部门预报,在距离码头A南偏东45°方向400千米B处的台风中心正以20千米每小时的速度向北偏东15°方向沿直线移动,以台风中心为圆心,距台风中心100
千米以内的地区都将受到台风影响.据以上预报估计,从现在起多长时间后,码头A将受到台风的影响?影响时间大约有多长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
,动圆
经过点
且和直线
相切,记动圆的圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设曲线
上一点
的横坐标为
,过
的直线交
于另一点
,交
轴于点
,过点
作
的垂线交
于另一点
.若
是
的切线,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高三期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及样本频率分布表如下:
分组 | 频数 | 频率 |
[40,50) | 2 | 0.04 |
[50,60) | 3 | 0.06 |
[60,70) | 14 | 0.28 |
[70,80) | 15 | ② |
[80,90) | ① | 0.24 |
[90,100] | 4 | 0.08 |
合计 | ③ | ④ |
(1)请把给出的样本频率分布表中的空格都填上;
(2)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[40,50)中的某一位同学,已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴建立极坐标系,直线
的参数方程为
,曲线
的极坐标方程为
.
(1)写出直线
的直角坐标方程和曲线
的普通方程;
(2)求直线
与曲线
的交点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,已知S3=7,且a1+3,3a2 , a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{an+log2an}(n∈N*)的前10项和T10 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com