精英家教网 > 高中数学 > 题目详情
13.已知集合A={x|x<-2或x>4},B={x|2x-1<8},则A∩B=(  )
A.{x|x≥4}B.{x|x>4}C.{x|x≥-2}D.{x|x<-2}

分析 解指数不等式求得B,再根据两个集合的交集的定义求得A∩B

解答 解:由A={x|x<-2或x>4},B={x|x<4},
故A∩B={x|x<-2}.
故选:D.

点评 本题主要考查指数不等式的解法,两个集合的交集的定义和求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=asinx+bcosx(a≠0)在$x=\frac{π}{4}$处取得最小值,则函数$f(\frac{3π}{4}-x)$是(  )
A.偶函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点$(\frac{3π}{2},0)$对称
C.奇函数且它的图象关于点(π,0)对称
D.奇函数且它的图象关于点$(\frac{3π}{2},0)$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{a}$⊥$\overrightarrow{b}$,|2$\overrightarrow{a}$-$\overrightarrow{b}$|=5,则|$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2eax
(Ⅰ)当a<0时,讨论函数f(x)的单调性;
(Ⅱ)在(1)条件下,求函数f(x)在区间[0,1]上的最大值;
(Ⅲ)设函数g(x)=2ex-$\frac{lnx}{x}$,求证:当a=1,对?x∈(0,1),g(x)-xf(x)>2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个三棱锥的顶点在空间直角坐标系中的坐标O-xyz分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),画出该三棱锥三视图中的俯视图时,以xoy平面为投影面,得到的俯视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,AA1⊥底面ABCD,E为B1D的中点.
(Ⅰ)证明:平面ACE⊥平面ABCD;
(Ⅱ)若AA1=AB=1,点C到平面AED的距离为$\frac{{\sqrt{2}}}{2}$,求三棱锥C-AED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:

根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的个数是(  )
①首次服用该药物1单位约10分钟后,药物发挥治疗作用
②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=$\frac{3-4i}{1-2i}$,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若随机变量X~N(μ,σ2)(σ>0),则有如下结论:
(P(|X-μ|<σ)=0.6826,P(|X-μ|<2σ)=0.9544,P(|X-μ|<3σ)=0.9974)
高三(1)班有40名同学,一次数学考试的成绩服从正态分布,平均分为120,方差为100,理论上说在130分以上人数约为(  )
A.19B.12C.6D.5

查看答案和解析>>

同步练习册答案