精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{a}$⊥$\overrightarrow{b}$,|2$\overrightarrow{a}$-$\overrightarrow{b}$|=5,则|$\overrightarrow{b}$|=$\sqrt{5}$.

分析 由条件容易得出${\overrightarrow{a}}^{2}=5,\overrightarrow{a}•\overrightarrow{b}=0$,这样对$|2\overrightarrow{a}-\overrightarrow{b}|=5$的两边同时平方即可求出${\overrightarrow{b}}^{2}$的值,进而求出$|\overrightarrow{b}|$的值.

解答 解:$\overrightarrow{a}⊥\overrightarrow{b}$;
∴$\overrightarrow{a}•\overrightarrow{b}=0$,且$|\overrightarrow{a}{|}^{2}=5$;
∴$(2\overrightarrow{a}-\overrightarrow{b})^{2}=4{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=$20-0+{\overrightarrow{b}}^{2}=25$;
∴${\overrightarrow{b}}^{2}=5$;
∴$|\overrightarrow{b}|=\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 考查向量坐标的数量积运算,向量垂直的充要条件,以及向量数量积的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设等差数列{an}的前n项和为Sn,Sm-1=13,Sm=0,Sm+1=-15.其中m∈N*且m≥2,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和的最大值为(  )
A.$\frac{24}{143}$B.$\frac{1}{143}$C.$\frac{24}{13}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$f(x)=sinxcosx-{cos^2}(x+\frac{π}{4})$x∈[-π,0],则f(x)的单调减区间为$[-\frac{3π}{4},0]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x(a-$\frac{1}{e^x}$),曲线y=f(x)上存在两个不同点,使得曲线在这两点处的切线都与y轴垂直,则实数a的取值范围是(  )
A.(-e2,+∞)B.(-e2,0)C.(-$\frac{1}{e^2}$,+∞)D.(-$\frac{1}{e^2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=alnx,g(x)=x+$\frac{1}{x}$+f′(x)
(Ⅰ)讨论h(x)=g(x)-f(x)的单调性;
(Ⅱ)若h(x)的极值点为3,设方程f(x)+mx=0的两个根为x1,x2,且$\frac{{x}_{2}}{{x}_{1}}$≥ea,求证:$\frac{f′({x}_{1}+{x}_{2})+m}{f′({x}_{1}-{x}_{2})}$>$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某程序框图如图所示,则该程序运行后输出的值是(  )
A.0B.-1C.-2D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-x+4>x+12},B={x|2x-1<8},则A∩(∁RB)=(  )
A.{x|x≥4}B.{x|x>4}C.{x|x≥-2}D.{x|x<-2或x≥4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x<-2或x>4},B={x|2x-1<8},则A∩B=(  )
A.{x|x≥4}B.{x|x>4}C.{x|x≥-2}D.{x|x<-2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x,y满足不等式$\left\{\begin{array}{l}x≥2\\ x+y≤6\\ x-2y≤0\end{array}\right.$则$\frac{y}{x}$的最大值是2.

查看答案和解析>>

同步练习册答案