分析 画出满足条件的平面区域,求出A的坐标,结合$\frac{y}{x}$的几何意义,求出其最大值即可.
解答
解:画出x,y满足不等式$\left\{\begin{array}{l}x≥2\\ x+y≤6\\ x-2y≤0\end{array}\right.$的平面区域,如图示:
由$\left\{\begin{array}{l}{x=2}\\{x+y=6}\end{array}\right.$,解得A(2,4),
而$\frac{y}{x}$的几何意义表示过平面区域内的点与原点的直线的斜率,
由图象得直线过OA时斜率最大,
∴($\frac{y}{x}$)max=$\frac{4}{2}$=2.
故答案为:2.
点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 1-2a | C. | 0 | D. | 21-2a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 19 | B. | 12 | C. | 6 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com