精英家教网 > 高中数学 > 题目详情
9.已知等差数列{an}的前n(n∈N*)项和为Sn,a3=3,且λSn=anan+1,在等比数列{bn}中,b1=2λ,b3=a15+1.
(Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设数列{cn}的前n(n∈N*)项和为Tn,且$({S_n}+\frac{n}{2}){c_n}=1$,求Tn

分析 (I)分别令n=1,2列方程,再根据等差数列的性质即可求出a1,a2得出an,计算b1,b3得出公比得出bn
(II)求出cn,根据裂项法计算Tn

解答 解:(Ⅰ)∵λSn=anan+1,a3=3,∴λa1=a1a2,且λ(a1+a2)=a2a3
∴a2=λ,a1+a2=a3=3,①
∵数列{an}是等差数列,∴a1+a3=2a2,即2a2-a1=3,②
由①②得a1=1,a2=2,∴an=n,λ=2,
∴b1=4,b3=16,∴{bn}的公比q=$±\sqrt{\frac{{b}_{3}}{{b}_{1}}}$=±2,
∴${b_n}={2^{n+1}}$或bn=(-2)n+1
(Ⅱ)由(I)知${S_n}=\frac{n(1+n)}{2}$,∴${c_n}=\frac{2}{n(n+2)}$=$\frac{1}{n}-\frac{1}{n+2}$,
∴Tn=$1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}++\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2}$
=1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{3}{2}-\frac{2n+3}{{{n^2}+3n+2}}$.

点评 本题考查了等差数列,等比数列的性质,裂项法数列求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=alnx,g(x)=x+$\frac{1}{x}$+f′(x)
(Ⅰ)讨论h(x)=g(x)-f(x)的单调性;
(Ⅱ)若h(x)的极值点为3,设方程f(x)+mx=0的两个根为x1,x2,且$\frac{{x}_{2}}{{x}_{1}}$≥ea,求证:$\frac{f′({x}_{1}+{x}_{2})+m}{f′({x}_{1}-{x}_{2})}$>$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-asinx-1,a∈R.
(1)若a=1,求f(x)在x=0处的切线方程;
(2)若f(x)≥0在区间[0,1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤4}\\{x≥1}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.$\frac{1}{3}$B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在区间[0,1]内随机取两个数分别为a,b,则使得方程x2+2ax+b2=0有实根的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x,y满足不等式$\left\{\begin{array}{l}x≥2\\ x+y≤6\\ x-2y≤0\end{array}\right.$则$\frac{y}{x}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{6}$个单位后,得到y=g(x)的图象,则下列说法错误的是(  )
A.y=g(x)的最小正周期为πB.y=g(x)的图象关于直线x=$\frac{π}{6}$对称
C.y=g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增D.y=g(x)的图象关于点($\frac{5π}{12}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知F1,F2分别为椭圆C:$\frac{x^2}{8}+\frac{y^2}{2}=1$的左、右焦点,点P(x0,y0)在椭圆C上.
(Ⅰ)求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值;
(Ⅱ)设直线l的斜率为$\frac{1}{2}$,直线l与椭圆C交于A,B两点,若点P在第一象限,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-1$,求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知奇函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,点M的坐标为(1,0)且△MNE为等腰直角三角形,当A取最大值时,f($\frac{1}{3}$)等于(  )
A.-$\frac{\sqrt{3}}{4}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

同步练习册答案