精英家教网 > 高中数学 > 题目详情
17.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤4}\\{x≥1}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.$\frac{1}{3}$B.1C.3D.4

分析 画出满足条件的平面区域,求出A的坐标,结合$\frac{y}{x}$的几何意义,求出其最大值即可.

解答 解:画出变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤4}\\{x≥1}\end{array}\right.$的平面区域,
如图示:
由$\left\{\begin{array}{l}{x=1}\\{x+y=4}\end{array}\right.$,解得A(1,3),
而$\frac{y}{x}$的几何意义表示过平面区域内的点与原点的直线的斜率,
由图象得直线过OA时斜率最大,
∴($\frac{y}{x}$)max=$\frac{3}{1}$=3.
故选:C.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的图象(部分)如图所示,则f(x)的解析式是(  )
A.f(x)=2sin(πx+$\frac{π}{6}$)B.f(x)=2sin(2πx+$\frac{π}{6}$)C.f(x)=2sin(πx+$\frac{π}{3}$)D.f(x)=2sin(2πx+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个三棱锥的顶点在空间直角坐标系中的坐标O-xyz分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),画出该三棱锥三视图中的俯视图时,以xoy平面为投影面,得到的俯视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:

根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的个数是(  )
①首次服用该药物1单位约10分钟后,药物发挥治疗作用
②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(1)求曲线C的普通方程与直线l的直角坐标方程;
(2)设P为曲线C上的动点,求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=$\frac{3-4i}{1-2i}$,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的前n(n∈N*)项和为Sn,a3=3,且λSn=anan+1,在等比数列{bn}中,b1=2λ,b3=a15+1.
(Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设数列{cn}的前n(n∈N*)项和为Tn,且$({S_n}+\frac{n}{2}){c_n}=1$,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,3)}\\{2|x-5|-2,x∈[3,+∞)}\end{array}\right.$,则关于x的函数g(x)=f(x)+a(0<a<2)的所有零点之和为(  )
A.10B.1-2aC.0D.21-2a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设P为曲线C1上动点,Q为曲线C2上动点,则称|PQ|的最小值为曲线C1,C2之间的距离,记作d(C1,C2).若C1:x2+y2=2,C2:(x-3)2+(y-3)2=2,则d(C1,C2)=$\sqrt{2}$;若C3:ex-2y=0,C4:lnx+ln2=y,则d(C3,C4)=$\sqrt{2}$(1-ln2).

查看答案和解析>>

同步练习册答案