精英家教网 > 高中数学 > 题目详情
7.设P为曲线C1上动点,Q为曲线C2上动点,则称|PQ|的最小值为曲线C1,C2之间的距离,记作d(C1,C2).若C1:x2+y2=2,C2:(x-3)2+(y-3)2=2,则d(C1,C2)=$\sqrt{2}$;若C3:ex-2y=0,C4:lnx+ln2=y,则d(C3,C4)=$\sqrt{2}$(1-ln2).

分析 考虑到C1:x2+y2=2,C2:(x-3)2+(y-3)2=2,利用圆心距减去半径,可得结论;
考虑到两曲线C3:ex-2y=0,C4:lnx+ln2=y关于直线y=x对称,求丨PQ丨的最小值可转化为求P到直线y=x的最小距离,再利用导数的几何意义,求曲线上斜率为1的切线方程,由点到直线的距离公式即可得到最小值.

解答 解:C1(0,0),r1=$\sqrt{2}$,C2(3,3),r2=$\sqrt{2}$,d(C1,C2)=3$\sqrt{2}$$-\sqrt{2}-\sqrt{2}$=$\sqrt{2}$;
∵C3:ex-2y=0,C4:lnx+ln2=y互为反函数,
先求出曲线ex-2y=0上的点到直线y=x的最小距离.
设与直线y=x平行且与曲线ex-2y=0相切的切点P(x0,y0).
y′=$\frac{1}{2}$ex
∴$\frac{1}{2}{e}^{{x}_{0}}$=1,解得x0=ln2
∴y0=1.
得到切点P(ln2,1),到直线y=x的距离d=$\frac{1-ln2}{\sqrt{2}}$,
丨PQ丨的最小值为2d=$\sqrt{2}$(1-ln2),
故答案为$\sqrt{2}$,$\sqrt{2}$(1-ln2).

点评 本题主要考查圆与圆的位置关系,考查了互为反函数的函数图象的对称性,导数的几何意义,曲线的切线方程的求法,转化化归的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤4}\\{x≥1}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.$\frac{1}{3}$B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知F1,F2分别为椭圆C:$\frac{x^2}{8}+\frac{y^2}{2}=1$的左、右焦点,点P(x0,y0)在椭圆C上.
(Ⅰ)求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值;
(Ⅱ)设直线l的斜率为$\frac{1}{2}$,直线l与椭圆C交于A,B两点,若点P在第一象限,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-1$,求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若平面向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(1,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则sin2θ的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex+x2-x,g(x)=x2+ax+b,a,b∈R.
(Ⅰ)当a=1时,求函数F(x)=f(x)-g(x)的单调区间;
(Ⅱ)若曲线y=f(x)在点(0,1)处的切线l与曲线y=g(x)切于点(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}x≥0\\ x+y≤2\\ x≤y\end{array}\right.$所表示的平面区域的面积为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知奇函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,点M的坐标为(1,0)且△MNE为等腰直角三角形,当A取最大值时,f($\frac{1}{3}$)等于(  )
A.-$\frac{\sqrt{3}}{4}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a=(cosθ,sinθ)$,向量$\overrightarrow{b}$=($\sqrt{3}$,1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则tanθ的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正数x,y满足x+2y=4xy,则x+$\frac{y}{2}$的最小值为$\frac{9}{8}$.

查看答案和解析>>

同步练习册答案