精英家教网 > 高中数学 > 题目详情
17.若正数x,y满足x+2y=4xy,则x+$\frac{y}{2}$的最小值为$\frac{9}{8}$.

分析 根据题意,将x+2y=4xy变形可得$\frac{1}{y}$+$\frac{2}{x}$=4,由此分析可得x+$\frac{y}{2}$=$\frac{1}{4}$×(x+$\frac{y}{2}$)($\frac{1}{y}$+$\frac{2}{x}$)=$\frac{1}{4}$($\frac{5}{2}$+$\frac{x}{y}$+$\frac{y}{x}$),由基本不等式的性质分析可得答案.

解答 解:根据题意,若x+2y=4xy,则有$\frac{1}{y}$+$\frac{2}{x}$=4,
则x+$\frac{y}{2}$=$\frac{1}{4}$×(x+$\frac{y}{2}$)($\frac{1}{y}$+$\frac{2}{x}$)=$\frac{1}{4}$($\frac{5}{2}$+$\frac{x}{y}$+$\frac{y}{x}$)≥$\frac{1}{4}$($\frac{5}{2}$+2)=$\frac{9}{8}$,
当且仅当x=y=$\frac{3}{4}$时等号成立;
即x+$\frac{y}{2}$的最小值为$\frac{9}{8}$;
故答案为:$\frac{9}{8}$.

点评 本题基本不等式的性质,关键是对x+2y=4xy变形,得到$\frac{1}{y}$+$\frac{2}{x}$=4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设P为曲线C1上动点,Q为曲线C2上动点,则称|PQ|的最小值为曲线C1,C2之间的距离,记作d(C1,C2).若C1:x2+y2=2,C2:(x-3)2+(y-3)2=2,则d(C1,C2)=$\sqrt{2}$;若C3:ex-2y=0,C4:lnx+ln2=y,则d(C3,C4)=$\sqrt{2}$(1-ln2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.三棱锥D-ABC中,AB=CD=$\sqrt{6}$,其余四条棱均为2,则三棱锥D-ABC的外接球的表面积为7π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正项数列{an}的前n项和Sn满足Sn=$\frac{({a}_{n}+1)^{2}}{4}$(n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(-1)nan+(-1)nan2,求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=loga(4-ax)在[0,2]上是单调递减函数,则实数a的取值范围为(  )
A.(0,1)B.(1,+∞)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知中心在原点,焦点在x轴上的椭圆C的离心率为$\frac{1}{2}$,上顶点与右焦点的距离为2,
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线y=kx+2与椭圆C交于A.B两点,点D(t,0)满足|DA|=|DB|,且t∈[-$\frac{\sqrt{3}}{6}$,-$\frac{1}{4}$],求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U={0,1,2,3,4,5},集合A={1,2,3,5},B={2,4},则(∁UA)∪B为(  )
A.{0,2,3,4}B.{4}C.{1,2,4}D.{0,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是一个平面内的三个向量,其中$\overrightarrow{a}$=(1,2)
(1)|$\overrightarrow{c}$|=2$\sqrt{5}$,$\overrightarrow{c}∥\overrightarrow{a}$,求$\overrightarrow{a}•\overrightarrow{c}$
(2)若|$\overrightarrow{b}$|=$\frac{3\sqrt{5}}{2}$,且$\overrightarrow{a}+2\overrightarrow{b}$与3$\overrightarrow{a}$-$\overrightarrow{b}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合$A=\left\{{(x,y)\left|{\left\{\begin{array}{l}x-y-1≤0\\ 3x-y+1≥0,x,y∈R\\ 3x+y-1≤0\end{array}\right.}\right.}\right\}$,则A表示的平面区域的面积是(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.1

查看答案和解析>>

同步练习册答案