分析 (Ⅰ)根据椭圆的离心率a=2c,且a=2,b2=a2-c2=3,即可求得椭圆方程;
(Ⅱ)将直线方程代入椭圆方程,由△>0,即可求得k的取值范围,由($\overrightarrow{DA}$+$\overrightarrow{DB}$)•$\overrightarrow{AB}$=0,求得t,根据t的取值范围,即可求得k的取值范围.
解答 解:(Ⅰ)由题意可知:e=$\frac{c}{a}$=$\frac{1}{2}$,则a=2c,
由上顶点与右焦点的距离为2,则a=2,
c=1,b2=a2-c2=3,
∴椭圆的标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)设A(x1,y1),B(x2,y2).
$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3+4k2)x2+16kx+4=0,
由x1+x2=-$\frac{16k}{3+4{k}^{2}}$,x1x2=$\frac{4}{3+4{k}^{2}}$,
由△=256k2-4×4(3+4k2)>0,解得:k<-$\frac{1}{2}$,k>$\frac{1}{2}$,
∵|DA|=|DB|,
则($\overrightarrow{DA}$+$\overrightarrow{DB}$)•$\overrightarrow{AB}$=0,解得:t=-$\frac{2k}{4{k}^{2}+3}$,
t∈[-$\frac{\sqrt{3}}{6}$,-$\frac{1}{4}$],则-$\frac{\sqrt{3}}{6}$≤-$\frac{2k}{4{k}^{2}+3}$≤-$\frac{1}{4}$,
整理得:$\left\{\begin{array}{l}{4{k}^{2}-8k+3≤0}\\{4{k}^{2}-4\sqrt{3}k+3≥0}\end{array}\right.$,
由k<-$\frac{1}{2}$,k>$\frac{1}{2}$,则$\frac{1}{2}$<k≤$\frac{3}{2}$,
∴实数k的取值范围($\frac{1}{2}$,$\frac{3}{2}$].
点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理的应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分而不必要条件 | ||
| C. | 必要而不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|1<x<2} | B. | {x|0<x<1} | C. | {x|0<x≤1} | D. | {x|1≤x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com