分析 (1)根据正弦定理与两角和的正弦公式,化简等式2bcosA=2c-a,可得(2cosB-1)sinA=0,结合sinA>0得到cosB,从而解出B;
(2)由余弦定理b2=a2+c2-2accosB的式子,解出12=a2+c2-ac.再利用基本不等式得出结论.
解答 解:(1)∵2c-a=2bcosA,
∴根据正弦定理,得2sinC-sinA=2sinBcosA,
∵A+B=π-C,可得sinC=sin(A+B)=sinBcosA+cosBsinA,
∴代入上式,得2sinBcosA=2sinBcosA+2cosBsinA-sinA,
化简得(2cosB-1)sinA=0
∵A是三角形的内角可得sinA>0,∴2cosB-1=0,解得cosB=$\frac{1}{2}$,
∵B∈(0,π),∴B=$\frac{π}{3}$;
(2)由余弦定理b2=a2+c2-2accosB,得12=a2+c2-ac.
∴(a+c)2-3ac=12,∴12≥(a+c)2-$\frac{3}{4}$ac,(当且仅当a=c=2$\sqrt{3}$时)
∴a+c≤4$\sqrt{3}$,
∴a+c的最大值为4$\sqrt{3}$.
点评 本题着重考查了正余弦定理、两角和与差的三角函数公式和诱导公式、运用基本不等式求最值等知识,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{25}{4}$ | B. | $\frac{27}{4}$ | C. | $\frac{29}{4}$ | D. | $\frac{31}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\frac{\sqrt{5}}{4}$ | D. | $\frac{\sqrt{65}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com