精英家教网 > 高中数学 > 题目详情
1.若x,y满足:$\left\{\begin{array}{l}{x+2y-19≥0}\\{x-y+8≥0}\\{2x+y-14≤0}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的最大值与最小值之和为(  )
A.$\frac{25}{4}$B.$\frac{27}{4}$C.$\frac{29}{4}$D.$\frac{31}{4}$

分析 由约束条件作出可行域,再由z=$\frac{y+1}{x+1}$的几何意义,即可行域内的动点与定点P(-1,-1)连线的斜率求解.

解答 解:由约束条件$\left\{\begin{array}{l}{x+2y-19≥0}\\{x-y+8≥0}\\{2x+y-14≤0}\end{array}\right.$作出可行域如图,

z=$\frac{y+1}{x+1}$的几何意义为可行域内的动点与定点P(-1,-1)连线的斜率,
联立方程组求得A(1,9),C(3,8),
又${k}_{PA}=5,{k}_{PC}=\frac{9}{4}$,
∴z=$\frac{y+1}{x+1}$的最大值与最小值之和为$\frac{29}{4}$,
故选:C.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知在△ABC中,角A.B,C所对边分别为a,b,c,C=2A.
(1)若c=$\sqrt{3}$a,求A的大小;
(2)若a,b,c依次为三个连续自然数,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}x≥0\\ x+y≤2\\ x≤y\end{array}\right.$所表示的平面区域的面积为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示程序框图,若输出的结果为5,则输入的实数a的范围是(  )
A.[6,24)B.[24,120)C.(-∞,6)D.(5,24)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a=(cosθ,sinθ)$,向量$\overrightarrow{b}$=($\sqrt{3}$,1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则tanθ的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了政府对过热的房地产市场进行调控决策,统计部门对城市人和农村人进行了买房心理预测调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表:
买房不买房纠结
城市人515
农村人2010
已知样本中城市人数与农村人数之比是3:8.
(Ⅰ)分别求样本中城市人中的不买房人数和农村人中的纠结人数;
(Ⅱ)从参与调研的城市人中用分层抽样方法抽取6人,进一步统计城市人的某项收入指标,假设一个买房人的指标算作3,一个纠结人的指标算作2,一个不买房人的指标算作1,现在从这6人中再随机选取3人,令X=再抽取3人指标之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x∈R,则“|x-2|<1”是“x2-2x-8<0”的(  )
A.充要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.△ABC的内角A,B,C的对边分别为a,b,c,已知2c-a=2bcosA.
(1)求角B的大小;
(2)若b=2$\sqrt{3}$,求a+c的最大值.

查看答案和解析>>

同步练习册答案