| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
分析 依题意,得:$\sqrt{3}$cosθ+sinθ=2sin(θ+$\frac{π}{3}$)=0,因此可得θ=kπ-$\frac{π}{3}$(k∈Z),继而可求得tanθ=-$\sqrt{3}$,得到答案.
解答 解:∵$\overrightarrow a=(cosθ,sinθ)$,$\overrightarrow{b}$=($\sqrt{3}$,1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$cosθ+sinθ=2sin(θ+$\frac{π}{3}$)=0,
∴θ+$\frac{π}{3}$=kπ(k∈Z),
∴θ=kπ-$\frac{π}{3}$(k∈Z),
∴tanθ=-$\sqrt{3}$.
故选:D.
点评 本题考查平面向量数量积的坐标运算,由$\overrightarrow{a}$⊥$\overrightarrow{b}$求得θ+$\frac{π}{3}$=kπ(k∈Z)是关键,考查运算求解能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 1-2a | C. | 0 | D. | 21-2a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{25}{4}$ | B. | $\frac{27}{4}$ | C. | $\frac{29}{4}$ | D. | $\frac{31}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com