精英家教网 > 高中数学 > 题目详情
5.已知正项数列{an}的前n项和Sn满足Sn=$\frac{({a}_{n}+1)^{2}}{4}$(n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(-1)nan+(-1)nan2,求数列{bn}的前2n项和T2n

分析 (Ⅰ)由已知数列递推式可得数列{an}是以1为首项,以2为公差的等差数列,再由等差数列的通项公式求得数列{an}的通项公式;
(Ⅱ)把数列{an}的通项公式代入bn=(-1)nan+(-1)nan2,然后利用数列的分组求和解得等差数列的前n项和求得数列{bn)的前2n项和T2n

解答 解:(Ⅰ)由Sn=$\frac{({a}_{n}+1)^{2}}{4}$,得当n=1时,${a}_{1}={S}_{1}=\frac{({a}_{1}+1)^{2}}{4}$,得a1=1;
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}=\frac{({a}_{n}+1)^{2}}{4}-\frac{({a}_{n-1}+1)^{2}}{4}$,化简得:
(an-an-1-2)(an+an-1)=0,得an-an-1=2(n≥2).
∴数列{an}是以1为首项,以2为公差的等差数列,
∴an=1+2(n-1)=2n-1;
(Ⅱ)∵bn=(-1)nan+(-1)nan2
∴T2n=b1+b2+b3+b4+…+b2n
=(-1-12)+(3+32)+(-5-52)+(7+72)+…+[(4n-1)+(4n-1)2]
=(-1+3)+(-5+7)+…+[-(4n-3)+(4n-1)]+(-12+32)+(-52+72)+…+[-(4n-3)2+(4n-1)2]
=2n+8[1+3+5+…+(2n-1)]
=2n+8•$\frac{1+(2n-1)}{2}•n$=8n2+2n.

点评 本题考查数列递推式,考查数列的分组求和,训练了等差数列前n项和的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若平面向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(1,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则sin2θ的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a=(cosθ,sinθ)$,向量$\overrightarrow{b}$=($\sqrt{3}$,1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则tanθ的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2sinxsin($\frac{π}{2}$-x)-2$\sqrt{3}$cos2x+$\sqrt{3}$在[0,$\frac{π}{2}$]上的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x∈R,则“|x-2|<1”是“x2-2x-8<0”的(  )
A.充要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正数x,y满足x+2y=4xy,则x+$\frac{y}{2}$的最小值为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算定积分${∫}_{-1}^{1}$(x2+sin3x)dx=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z=1+i,其中i为虚数单位,则复数1+z+z2+…+z2017的实部为(  )
A.1B.-1C.21009D.-21009

查看答案和解析>>

同步练习册答案