精英家教网 > 高中数学 > 题目详情
15.若平面向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(1,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则sin2θ的值是1.

分析 利用向量垂直,就是数量积为0,求出cosθ-sinθ=0,两边平方,利用同角三角函数基本关系式,二倍角的正弦函数公式可求sin2θ的值.

解答 解:因为$\overrightarrow{a}$⊥$\overrightarrow{b}$,
所以$\overrightarrow{a}$•$\overrightarrow{b}$=0,
即:cosθ-sinθ=0,
两边平方可得:cos2θ-2sinθcosθ+sin2θ=0,
可得:1-sin2θ=0,解得:sin2θ=1.
故答案为:1.

点评 本题考查数量积判断两个平面向量的垂直关系,考查计算能力,逻辑思维能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:

根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的个数是(  )
①首次服用该药物1单位约10分钟后,药物发挥治疗作用
②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,3)}\\{2|x-5|-2,x∈[3,+∞)}\end{array}\right.$,则关于x的函数g(x)=f(x)+a(0<a<2)的所有零点之和为(  )
A.10B.1-2aC.0D.21-2a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若随机变量X~N(μ,σ2)(σ>0),则有如下结论:
(P(|X-μ|<σ)=0.6826,P(|X-μ|<2σ)=0.9544,P(|X-μ|<3σ)=0.9974)
高三(1)班有40名同学,一次数学考试的成绩服从正态分布,平均分为120,方差为100,理论上说在130分以上人数约为(  )
A.19B.12C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{a}{x}+1,(x>1)}\\{-{x}^{2}+2x(x≤1)}\end{array}\right.$在R上单调递增,则实数a的取值范围是(  )
A.[0,1]B.(0,1]C.[-1,1]D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分别为边AC,AB的中点,点F,G分别为线段CD,BE的中点.将△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.点Q为线段A1B上的一点,如图2.

(Ⅰ)求证:A1F⊥BE;
(Ⅱ)线段A1B上是否存在点Q£?使得FQ∥平面A1DE?若存在,求出A1Q的长,若不存在,请说明理由;
(Ⅲ)当$\overrightarrow{{A_1}Q}=\frac{3}{4}\overrightarrow{{A_1}B}$时,求直线GQ与平面A1DE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设P为曲线C1上动点,Q为曲线C2上动点,则称|PQ|的最小值为曲线C1,C2之间的距离,记作d(C1,C2).若C1:x2+y2=2,C2:(x-3)2+(y-3)2=2,则d(C1,C2)=$\sqrt{2}$;若C3:ex-2y=0,C4:lnx+ln2=y,则d(C3,C4)=$\sqrt{2}$(1-ln2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=||x|-2|+x-3.
(1)画出y=f(x)的图象.
(2)解不等式f(x)<$\frac{1}{2}$x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正项数列{an}的前n项和Sn满足Sn=$\frac{({a}_{n}+1)^{2}}{4}$(n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(-1)nan+(-1)nan2,求数列{bn}的前2n项和T2n

查看答案和解析>>

同步练习册答案