精英家教网 > 高中数学 > 题目详情
3.若随机变量X~N(μ,σ2)(σ>0),则有如下结论:
(P(|X-μ|<σ)=0.6826,P(|X-μ|<2σ)=0.9544,P(|X-μ|<3σ)=0.9974)
高三(1)班有40名同学,一次数学考试的成绩服从正态分布,平均分为120,方差为100,理论上说在130分以上人数约为(  )
A.19B.12C.6D.5

分析 利用正态分布的特点求出分数在130以上的概率,再计算人数.

解答 解:μ=120,σ=$\sqrt{100}$=10,
∴P(110<R<130)=0.6826,
∴P(R>130)=$\frac{1}{2}$[1-P(110<R<130)]=$\frac{1}{2}$×0.3174=0.1587,
∴130分以上的人数约为40×0.1587≈6人.
故选C.

点评 本题考查了正态分布的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x<-2或x>4},B={x|2x-1<8},则A∩B=(  )
A.{x|x≥4}B.{x|x>4}C.{x|x≥-2}D.{x|x<-2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x,y满足不等式$\left\{\begin{array}{l}x≥2\\ x+y≤6\\ x-2y≤0\end{array}\right.$则$\frac{y}{x}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在△ABC中,角A.B,C所对边分别为a,b,c,C=2A.
(1)若c=$\sqrt{3}$a,求A的大小;
(2)若a,b,c依次为三个连续自然数,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知F1,F2分别为椭圆C:$\frac{x^2}{8}+\frac{y^2}{2}=1$的左、右焦点,点P(x0,y0)在椭圆C上.
(Ⅰ)求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值;
(Ⅱ)设直线l的斜率为$\frac{1}{2}$,直线l与椭圆C交于A,B两点,若点P在第一象限,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-1$,求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$a={log_3}\frac{1}{2}$,$b={log_{\frac{1}{2}}}\frac{1}{3}$,$c={(\frac{1}{2})^{\frac{1}{3}}}$,则(  )
A.c>b>aB.b>c>aC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若平面向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(1,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则sin2θ的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}x≥0\\ x+y≤2\\ x≤y\end{array}\right.$所表示的平面区域的面积为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案