精英家教网 > 高中数学 > 题目详情
13.某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{2}{3}$

分析 确定基本事件的个数,即可求出概率.

解答 解:随机选派2人参加象棋比赛,有${C}_{5}^{2}$=10种,选出的2人中恰有1人是女队员,有${C}_{2}^{1}{C}_{3}^{1}$=6种,
∴所求概率为$\frac{6}{10}$=$\frac{3}{5}$,
故选C.

点评 本题考查古典概型,考查概率的计算,确定基本事件的个数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若随机变量X~N(μ,σ2)(σ>0),则有如下结论:
(P(|X-μ|<σ)=0.6826,P(|X-μ|<2σ)=0.9544,P(|X-μ|<3σ)=0.9974)
高三(1)班有40名同学,一次数学考试的成绩服从正态分布,平均分为120,方差为100,理论上说在130分以上人数约为(  )
A.19B.12C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=||x|-2|+x-3.
(1)画出y=f(x)的图象.
(2)解不等式f(x)<$\frac{1}{2}$x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x,y满足:$\left\{\begin{array}{l}{x+2y-19≥0}\\{x-y+8≥0}\\{2x+y-14≤0}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的最大值与最小值之和为(  )
A.$\frac{25}{4}$B.$\frac{27}{4}$C.$\frac{29}{4}$D.$\frac{31}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.三棱锥D-ABC中,AB=CD=$\sqrt{6}$,其余四条棱均为2,则三棱锥D-ABC的外接球的表面积为7π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.阅读右边的程序框图,运行相应程序,输出s的值为87.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正项数列{an}的前n项和Sn满足Sn=$\frac{({a}_{n}+1)^{2}}{4}$(n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(-1)nan+(-1)nan2,求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知中心在原点,焦点在x轴上的椭圆C的离心率为$\frac{1}{2}$,上顶点与右焦点的距离为2,
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线y=kx+2与椭圆C交于A.B两点,点D(t,0)满足|DA|=|DB|,且t∈[-$\frac{\sqrt{3}}{6}$,-$\frac{1}{4}$],求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F为抛物线4y2=x的焦点,点A,B都是抛物线上的点且位于x轴的两侧,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=15(O为原点),则△ABO和△AFO的面积之和的最小值为(  )
A.$\frac{1}{8}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{65}}{2}$

查看答案和解析>>

同步练习册答案