精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{a}{x}+1,(x>1)}\\{-{x}^{2}+2x(x≤1)}\end{array}\right.$在R上单调递增,则实数a的取值范围是(  )
A.[0,1]B.(0,1]C.[-1,1]D.(-1,1]

分析 根据函数的单调性求出a的范围即可.

解答 解:x≤1时,f(x)=-(x-1)2+1≤1,
x>1时,f(x)=x+$\frac{a}{x}$+1,f′(x)=1-$\frac{a}{{x}^{2}}$≥0在(1,+∞)恒成立,
故a≤x2在(1,+∞)恒成立,
故a≤1,
而1+a+1≥1,即a≥-1,
综上,a∈[-1,1],
故选:C.

点评 本题考查了函数的单调性问题,考查分段函数问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-asinx-1,a∈R.
(1)若a=1,求f(x)在x=0处的切线方程;
(2)若f(x)≥0在区间[0,1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{6}$个单位后,得到y=g(x)的图象,则下列说法错误的是(  )
A.y=g(x)的最小正周期为πB.y=g(x)的图象关于直线x=$\frac{π}{6}$对称
C.y=g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增D.y=g(x)的图象关于点($\frac{5π}{12}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知F1,F2分别为椭圆C:$\frac{x^2}{8}+\frac{y^2}{2}=1$的左、右焦点,点P(x0,y0)在椭圆C上.
(Ⅰ)求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值;
(Ⅱ)设直线l的斜率为$\frac{1}{2}$,直线l与椭圆C交于A,B两点,若点P在第一象限,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=-1$,求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由直线$y=-x+\frac{5}{2}$和曲线$y=\frac{1}{x}$围成的封闭图形的面积为$\frac{15}{8}$-2ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若平面向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(1,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则sin2θ的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex+x2-x,g(x)=x2+ax+b,a,b∈R.
(Ⅰ)当a=1时,求函数F(x)=f(x)-g(x)的单调区间;
(Ⅱ)若曲线y=f(x)在点(0,1)处的切线l与曲线y=g(x)切于点(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知奇函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,点M的坐标为(1,0)且△MNE为等腰直角三角形,当A取最大值时,f($\frac{1}{3}$)等于(  )
A.-$\frac{\sqrt{3}}{4}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2sinxsin($\frac{π}{2}$-x)-2$\sqrt{3}$cos2x+$\sqrt{3}$在[0,$\frac{π}{2}$]上的最大值为2.

查看答案和解析>>

同步练习册答案