精英家教网 > 高中数学 > 题目详情
11.如图1,四边形ABCD是菱形,且∠A=60°,AB=2,E为AB的中点,将四边形EBCD沿DE折起至EDC1B1,如图2.

(Ⅰ) 求证:平面ADE⊥平面AEB1
(Ⅱ) 若二面角A-DE-C1的大小为$\frac{π}{3}$,求三棱锥C1-AB1D的体积.

分析 (Ⅰ)由原图形中的DE⊥AB,可得折起后DE⊥AE,DE⊥B1E,再由线面垂直的判定可得DE⊥平面AEB1,进一步得到平面ADE⊥平面AEB1
(Ⅱ)通过解三角形求出三角形ADB1 的面积,利用等积法求得E到平面ADB1 的距离,再由比例关系求得C1到平面ADB1 的距离,则三棱锥C1-AB1D的体积可求.

解答 证明:(Ⅰ)∵图1,四边形ABCD是菱形,且∠A=60°,E为AB的中点,
∴DE⊥AB,
∵将四边形EBCD沿DE折起至EDC1B1,如图2,
∴DE⊥AE,DE⊥B1E,
又AE∩B1E=E,∴DE⊥平面AEB1
∵DE?平面ADE,∴平面ADE⊥平面AEB1
解:(Ⅱ)由(Ⅰ)知,DE⊥AE,DE⊥B1E,∴∠AEB1 为二面角A-DE-C1的平面角为$\frac{π}{3}$,又∵AE=EB1=1,∴△AEB1 为正三角形,则AB1=1.
在RtDEB1 中,由${B}_{1}E=1,DE=\sqrt{3}$,可得B1D=2,
∴△ADB1是等腰三角形,底边AB1 上的高等于$\sqrt{{2}^{2}-(\frac{1}{2})^{2}}=\frac{\sqrt{15}}{2}$.
则${S}_{△AD{B}_{1}}=\frac{1}{2}×1×\frac{\sqrt{15}}{2}=\frac{\sqrt{15}}{4}$.
设E到平面ADB1的距离为h,则由等积法得:$\frac{1}{3}×\frac{\sqrt{15}}{4}h=\frac{1}{3}×\frac{1}{2}×1×\frac{\sqrt{3}}{2}×\sqrt{3}$,
得h=$\frac{\sqrt{15}}{5}$.
∵C1D∥B1E,且C1D=2B1E,
∴C1 到平面ADB1 的距离为$\frac{2\sqrt{15}}{5}$.
则${V}_{{C}_{1}-A{B}_{1}D}=\frac{1}{3}×\frac{\sqrt{15}}{4}×\frac{2\sqrt{15}}{5}=\frac{1}{2}$.

点评 本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{6}$个单位后,得到y=g(x)的图象,则下列说法错误的是(  )
A.y=g(x)的最小正周期为πB.y=g(x)的图象关于直线x=$\frac{π}{6}$对称
C.y=g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增D.y=g(x)的图象关于点($\frac{5π}{12}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex+x2-x,g(x)=x2+ax+b,a,b∈R.
(Ⅰ)当a=1时,求函数F(x)=f(x)-g(x)的单调区间;
(Ⅱ)若曲线y=f(x)在点(0,1)处的切线l与曲线y=g(x)切于点(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知奇函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,点M的坐标为(1,0)且△MNE为等腰直角三角形,当A取最大值时,f($\frac{1}{3}$)等于(  )
A.-$\frac{\sqrt{3}}{4}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.2017年3月2日至16日,全国两会在北京召开,甲、乙两市近5年与会代表名额数统计如图所示,设甲、乙的数据平均数分别为$\overline{{x}_{1}}$,$\overline{{x}_{2}}$,中位数分别为y1,y2,则(  )
A.$\overline{{x}_{1}}$>$\overline{{x}_{2}}$,y1>y2B.$\overline{{x}_{1}}$>$\overline{{x}_{2}}$,y1=y2C.$\overline{{x}_{1}}$<$\overline{{x}_{2}}$,y1=y2D.$\overline{{x}_{1}}$<$\overline{{x}_{2}}$,y1<y2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a=(cosθ,sinθ)$,向量$\overrightarrow{b}$=($\sqrt{3}$,1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则tanθ的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若命题p:“?x∈(-∞,0),x2≥0”,则¬p为?x0∈(-∞,0),x02<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2sinxsin($\frac{π}{2}$-x)-2$\sqrt{3}$cos2x+$\sqrt{3}$在[0,$\frac{π}{2}$]上的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(tanx)=sinxcosx,则f(2)的值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案